The origin and compositions of melt inclusions in an Al2SiO5-free paragneiss from the Namche Barwa Complex in the Eastern Himalayan Syntaxis

IF 3.5 2区 地球科学 Q1 GEOLOGY Journal of Metamorphic Geology Pub Date : 2023-04-12 DOI:10.1111/jmg.12721
Qiang Liu, Penglei Liu, Xin Li, Junfeng Zhang
{"title":"The origin and compositions of melt inclusions in an Al2SiO5-free paragneiss from the Namche Barwa Complex in the Eastern Himalayan Syntaxis","authors":"Qiang Liu,&nbsp;Penglei Liu,&nbsp;Xin Li,&nbsp;Junfeng Zhang","doi":"10.1111/jmg.12721","DOIUrl":null,"url":null,"abstract":"<p>Melt inclusions (MIs) in high-temperature metamorphic rocks provide a unique window into crustal anatexis in collisional orogenic belts and have been widely used to characterize compositions of anatectic melts as well as melting mechanisms. In this study, MIs hosted by peritectic garnet were for the first time identified in an Al<sub>2</sub>SiO<sub>5</sub>-free graywacke-type paragneiss from the Namche Barwa Complex, the Eastern Himalaya, Southeast Tibet. These MIs occur as nanogranites in the rims of porphyroblastic garnet, exhibit negative crystal shapes with an average diameter of ~12 μm and consist of a mineral assemblage of biotite + quartz + plagioclase + K-feldspar ± muscovite. Re-homogenization experiments of these nanogranites were conducted at a pressure of 1.5 GPa and temperatures of 800°C, 850°C and 900°C and produced homogeneous glasses at 850°C. The homogenized glasses are strongly peraluminous and calc-alkalic in composition, with 66.43–71.31 wt.% SiO<sub>2</sub>, 12.64–15.06 wt.% Al<sub>2</sub>O<sub>3</sub>, high alkaline (5.41–7.22 wt.%) and low ferromagnesian (2.72–4.46 wt.%) contents. They are lower in silica and CaO but higher in K<sub>2</sub>O compared with MI produced by fluid-present melting of metasedimentary rocks, thus indicating fluid-absent melting. These glasses are also characterized by enrichment of large ion lithophile elements (particularly Cs and Rb), depletion of Ba and Sr, low contents of light rare earth elements (3.6 to 33.7 ppm), high Rb/Sr ratios (6.19–37.3) and low Nb/Ta ratios (2.55–18.7). In combination with phase equilibrium modelling, these compositional features suggest that a sequential dehydration melting of muscovite and biotite was responsible for the production of MI during prograde metamorphism of the studied paragneiss. By compiling MI data published in the literature, we show that dehydration melting of metasedimentary rocks from the Himalayan orogen can produce initial melts with various peraluminous and granitic compositions.</p>","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":"41 7","pages":"879-898"},"PeriodicalIF":3.5000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metamorphic Geology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12721","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Melt inclusions (MIs) in high-temperature metamorphic rocks provide a unique window into crustal anatexis in collisional orogenic belts and have been widely used to characterize compositions of anatectic melts as well as melting mechanisms. In this study, MIs hosted by peritectic garnet were for the first time identified in an Al2SiO5-free graywacke-type paragneiss from the Namche Barwa Complex, the Eastern Himalaya, Southeast Tibet. These MIs occur as nanogranites in the rims of porphyroblastic garnet, exhibit negative crystal shapes with an average diameter of ~12 μm and consist of a mineral assemblage of biotite + quartz + plagioclase + K-feldspar ± muscovite. Re-homogenization experiments of these nanogranites were conducted at a pressure of 1.5 GPa and temperatures of 800°C, 850°C and 900°C and produced homogeneous glasses at 850°C. The homogenized glasses are strongly peraluminous and calc-alkalic in composition, with 66.43–71.31 wt.% SiO2, 12.64–15.06 wt.% Al2O3, high alkaline (5.41–7.22 wt.%) and low ferromagnesian (2.72–4.46 wt.%) contents. They are lower in silica and CaO but higher in K2O compared with MI produced by fluid-present melting of metasedimentary rocks, thus indicating fluid-absent melting. These glasses are also characterized by enrichment of large ion lithophile elements (particularly Cs and Rb), depletion of Ba and Sr, low contents of light rare earth elements (3.6 to 33.7 ppm), high Rb/Sr ratios (6.19–37.3) and low Nb/Ta ratios (2.55–18.7). In combination with phase equilibrium modelling, these compositional features suggest that a sequential dehydration melting of muscovite and biotite was responsible for the production of MI during prograde metamorphism of the studied paragneiss. By compiling MI data published in the literature, we show that dehydration melting of metasedimentary rocks from the Himalayan orogen can produce initial melts with various peraluminous and granitic compositions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
喜马拉雅造山带东部Namche-Barwa杂岩中无Al2SiO5共生体熔体包裹体的起源和成分
高温变质岩中的熔体包裹体(MI)为了解碰撞造山带地壳锐钛矿提供了一个独特的窗口,并已被广泛用于表征锐钛矿熔体的组成和熔融机制。在本研究中,首次在西藏东南部喜马拉雅东部南车-巴尔瓦杂岩的一个不含Al2SiO5的杂砂岩型共生体中发现了包晶石榴石所含的MI。这些MI以纳米花岗岩的形式出现在斑晶石榴石边缘,呈现出平均直径为~12的负晶体形状 μm,由黑云母+石英+斜长石+钾长石+白云母的矿物组合组成。这些纳米花岗岩的再均匀化实验在1.5 GPa的压力和800°C、850°C和900°C的温度下进行,并在850°C下产生均匀的玻璃。均化玻璃的成分为强过铝质和钙碱性,为66.43–71.31 SiO2重量百分比,12.64–15.06 Al2O3重量百分比,高碱性(5.41–7.22 wt.%)和低铁磁体(2.72–4.46 wt.%)含量。与变质沉积岩的流体熔融产生的MI相比,它们的二氧化硅和CaO含量较低,但K2O含量较高,因此表明没有流体熔融。这些玻璃还具有大离子亲石元素(特别是Cs和Rb)富集、Ba和Sr贫化、轻稀土元素含量低(3.6至33.7 ppm)、Rb/Sr比值高(6.19–37.3)和Nb/Ta比值低(2.55–18.7)的特征。结合相平衡建模,这些组成特征表明,白云母和黑云母的连续脱水熔融是所研究的副片麻岩进变质过程中MI产生的原因。通过汇编文献中发表的MI数据,我们表明喜马拉雅造山带变质沉积岩的脱水熔融可以产生具有各种过铝质和花岗岩成分的初始熔体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
11.80%
发文量
57
审稿时长
6-12 weeks
期刊介绍: The journal, which is published nine times a year, encompasses the entire range of metamorphic studies, from the scale of the individual crystal to that of lithospheric plates, including regional studies of metamorphic terranes, modelling of metamorphic processes, microstructural and deformation studies in relation to metamorphism, geochronology and geochemistry in metamorphic systems, the experimental study of metamorphic reactions, properties of metamorphic minerals and rocks and the economic aspects of metamorphic terranes.
期刊最新文献
Issue Information Zircon Coupled Dissolution–Precipitation Replacement During Melt–Rock Interaction Modifies Chemical Signatures Resulting in Misleading Ages Pressure–Temperature–Time Evolution of a Polymetamorphic Paragneiss With Pseudomorphs After Jadeite From the HP–UHP Gneiss-Eclogite Unit of the Variscan Erzgebirge Crystalline Complex, Germany Issue Information Experimental Replacement of Zircon by Melt-Mediated Coupled Dissolution-Precipitation Causes Dispersion in U–Pb Ages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1