Dissipation, residues analysis and risk assessment of metconazole in grapes under field conditions using gas chromatography–tandem mass spectrometry

IF 4.6 3区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Quality Assurance and Safety of Crops & Foods Pub Date : 2021-12-10 DOI:10.15586/qas.v13i4.982
Wang Guo, Yuling Chen, Hui Jiao, D. Hu, Ping Lu
{"title":"Dissipation, residues analysis and risk assessment of metconazole in grapes under field conditions using gas chromatography–tandem mass spectrometry","authors":"Wang Guo, Yuling Chen, Hui Jiao, D. Hu, Ping Lu","doi":"10.15586/qas.v13i4.982","DOIUrl":null,"url":null,"abstract":"Metconazole (MEZ) is widely used in prevention and control of fruit and vegetable diseases. Here, a simple and reliable gas chromatography–tandem mass spectrometry (GC-MS/MS) method, using modified QuEChERS (“quick, easy, cheap, effective, rugged and safe”) extraction method, was developed for determining the dissipation and residue of MEZ in grapes and soil, and the dietary risk of MEZ residues in grapes was evaluated for Chinese people. The average recoveries of MEZ in two matrices were 80.72–100.36% with relative standard deviations of 1.56–6.16%. The same limits of detection and quantification in grapes and soil were 0.0006 mg/kg and 0.002 mg/kg, respectively. Under field conditions, the half-life of MEZ dissipation in grapes ranged from 11.75 to 20.39 days. The final residues of MEZ in grapes and soil ranged from 0.002 mg/kg to 0.19 mg/kg at pre-harvest intervals of 7, 14 and 21 days. The whole dietary risk assessment indicated acute hazard index and hazard quotient to be less than 1, implying the risk of MEZ was acceptable. This is the first study conducted on the dissipation, residue analysis and risk assessment of MEZ in grapes, thus providing reference for the detection and risk assessment of MEZ in other agricultural products.","PeriodicalId":20868,"journal":{"name":"Quality Assurance and Safety of Crops & Foods","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality Assurance and Safety of Crops & Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.15586/qas.v13i4.982","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 15

Abstract

Metconazole (MEZ) is widely used in prevention and control of fruit and vegetable diseases. Here, a simple and reliable gas chromatography–tandem mass spectrometry (GC-MS/MS) method, using modified QuEChERS (“quick, easy, cheap, effective, rugged and safe”) extraction method, was developed for determining the dissipation and residue of MEZ in grapes and soil, and the dietary risk of MEZ residues in grapes was evaluated for Chinese people. The average recoveries of MEZ in two matrices were 80.72–100.36% with relative standard deviations of 1.56–6.16%. The same limits of detection and quantification in grapes and soil were 0.0006 mg/kg and 0.002 mg/kg, respectively. Under field conditions, the half-life of MEZ dissipation in grapes ranged from 11.75 to 20.39 days. The final residues of MEZ in grapes and soil ranged from 0.002 mg/kg to 0.19 mg/kg at pre-harvest intervals of 7, 14 and 21 days. The whole dietary risk assessment indicated acute hazard index and hazard quotient to be less than 1, implying the risk of MEZ was acceptable. This is the first study conducted on the dissipation, residue analysis and risk assessment of MEZ in grapes, thus providing reference for the detection and risk assessment of MEZ in other agricultural products.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用气相色谱-串联质谱法分析葡萄中甲基康唑的耗散、残留及风险评价
甲康唑(MEZ)广泛应用于果蔬病害的防治。本文采用改进的QuEChERS(快速、简便、廉价、有效、坚固、安全)提取方法,建立了一种简便、可靠的气相色谱-串联质谱(GC-MS/MS)测定MEZ在葡萄和土壤中的耗散和残留的方法,并对国人葡萄中MEZ残留的膳食风险进行了评价。两种基质中MEZ的平均回收率为80.72 ~ 100.36%,相对标准偏差为1.56 ~ 6.16%。葡萄和土壤的检出定量限分别为0.0006 mg/kg和0.002 mg/kg。在田间条件下,葡萄MEZ耗散半衰期为11.75 ~ 20.39 d。收获前7、14和21 d, MEZ在葡萄和土壤中的最终残留量为0.002 ~ 0.19 mg/kg。整体膳食风险评估急性危害指数和危害商均小于1,MEZ风险可接受。本文首次开展了MEZ在葡萄中的耗散、残留分析和风险评价研究,为其他农产品中MEZ的检测和风险评价提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
7.50%
发文量
61
审稿时长
1 months
期刊介绍: ''Quality Assurance and Safety of Crops & Foods'' is an international peer-reviewed journal publishing research and review papers associated with the quality and safety of food and food sources including cereals, grains, oilseeds, fruits, root crops and animal sources. It targets both primary materials and their conversion to human foods. There is a strong focus on the development and application of new analytical tools and their potential for quality assessment, assurance, control and safety. The scope includes issues of risk assessment, traceability, authenticity, food security and socio-economic impacts. Manuscripts presenting novel data and information that are likely to significantly contribute to scientific knowledge in areas of food quality and safety will be considered. ''Quality Assurance and Safety of Crops & Foods'' provides a forum for all those working in the specialist field of food quality and safety to report on the progress and outcomes of their research.
期刊最新文献
Antimicrobial mechanism and biocontrol effect of Bacillus cereus XZ30-2 on Aspergillus niger Extraction, isolation, identification, and bioactivity of polysaccharides from Antrodia cinnamomea Exploring the efficacy of Shexiang Tongxin extract pills in severe heart failure Investigation of meat species adulteration in beef-based meat products via real-time PCR in Türkiye Prevalence of anterior nares colonization of Palestinian diabetic patients with Staphylococcus aureus or methicillin-resistant Staphylococcus aureus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1