{"title":"A Bayesian record linkage model incorporating relational data","authors":"Juan Sosa, Abel Rodríguez","doi":"10.1002/asmb.2792","DOIUrl":null,"url":null,"abstract":"<p>In this article, we introduce a novel Bayesian approach for linking multiple social networks in order to discover the same real world person having different accounts across networks. In particular, we develop a latent model that allows us to jointly characterize the network and linkage structures relying on both relational and profile data. In contrast to other existing approaches in the machine learning literature, our Bayesian implementation naturally provides uncertainty quantification via posterior probabilities for the linkage structure itself or any function of it. Our findings clearly suggest that our methodology can produce accurate point estimates of the linkage structure even in the absence of profile information, and also, in an identity resolution setting, our results confirm that including relational data into the matching process improves the linkage accuracy. We illustrate our methodology using real data from popular social networks such as <span>Twitter</span>, <span>Facebook</span>, and <span>YouTube</span>.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":"39 6","pages":"755-771"},"PeriodicalIF":1.3000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2792","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we introduce a novel Bayesian approach for linking multiple social networks in order to discover the same real world person having different accounts across networks. In particular, we develop a latent model that allows us to jointly characterize the network and linkage structures relying on both relational and profile data. In contrast to other existing approaches in the machine learning literature, our Bayesian implementation naturally provides uncertainty quantification via posterior probabilities for the linkage structure itself or any function of it. Our findings clearly suggest that our methodology can produce accurate point estimates of the linkage structure even in the absence of profile information, and also, in an identity resolution setting, our results confirm that including relational data into the matching process improves the linkage accuracy. We illustrate our methodology using real data from popular social networks such as Twitter, Facebook, and YouTube.
期刊介绍:
ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process.
The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.