Making the optimal grade

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL Advances in Mechanical Engineering Pub Date : 2023-08-01 DOI:10.1177/16878132231187797
James Baldwin
{"title":"Making the optimal grade","authors":"James Baldwin","doi":"10.1177/16878132231187797","DOIUrl":null,"url":null,"abstract":"Researchers in Vietnam and Canada have developed a ready to use model to predict critical loads for functionally graded materials. Their neural network-based technique is ideal for users working on functionally graded plates and does not require advanced coding skill to implement [Le T-T, Duong HT, Phan HC. Optimization of Neural Network architecture and derivation of closed-form equation to predict ultimate load of functionally graded material plate. Advances in Mechanical Engineering. 2023;15(5). doi:10.1177/16878132231175002].","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132231187797","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Researchers in Vietnam and Canada have developed a ready to use model to predict critical loads for functionally graded materials. Their neural network-based technique is ideal for users working on functionally graded plates and does not require advanced coding skill to implement [Le T-T, Duong HT, Phan HC. Optimization of Neural Network architecture and derivation of closed-form equation to predict ultimate load of functionally graded material plate. Advances in Mechanical Engineering. 2023;15(5). doi:10.1177/16878132231175002].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
做出最佳成绩
越南和加拿大的研究人员开发了一个现成的模型来预测功能梯度材料的临界载荷。他们的神经网络技术非常适合在功能梯度板上工作的用户,不需要高级编码技能即可实现[Le T-T,Duong HT,Phan HC。神经网络结构的优化和闭合方程的推导,以预测功能梯度材料板的极限载荷。机械工程进展。2023;15(5)doi:10.1177/16878132232175002]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering 工程技术-机械工程
CiteScore
3.60
自引率
4.80%
发文量
353
审稿时长
6-12 weeks
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
期刊最新文献
The development of the fuel saving control strategy for 48 V P0 system: Design and experimental investigation Abnormal noise identification of engines based on wavelet packet transform and bispectrum analysis Modeling and analysis of static and dynamic behavior of marine towed cable-array system based on the vessel motion Structural optimization of laminated leaf-like piezoelectric wind energy harvesters based on topological method Design of a novel two-degree-of-freedom translational-rotation low-frequency vibration isolation platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1