{"title":"Enhancement of Guided Wave Detection and Measurement in Buried Layers of Multilayered Structures Using a New Design of V(z) Acoustic Transducers","authors":"M. Lematre, M. Lethiecq","doi":"10.3390/acoustics4040061","DOIUrl":null,"url":null,"abstract":"This paper presents the possibility of enhancement of the generation and detection of poorly energetic acoustic-guided waves in multilayered structures using a new design for a V(z) transducer. By defining a modified V(z) transducer composed of segmented piezoelectric elements, the acoustical energy can be directed towards specific angles in such a way as to generate guided waves that are poorly energetic. By comparing the results using this new design to those obtained with a classical V(z) transducer, it is shown that the generation and detection of such waves is greatly improved, especially for poorly energetic waves that belong to a buried layer in a multilayered structure. This is especially seen on the components of the spectra of V(z). The modeling of the modified V(z) signature for a multi-element focused transducer is widely detailed first. Then, in order to illustrate the advantages of our proposed method, a three-layer structure (aluminum/epoxy/steel) is discussed. The interest of this method for the characterization of elastic properties of “buried” layers through specific guided waves that are detected with great difficulty—or even not at all—with a classical V(z) transducer is demonstrated, especially for the A0 and S0 modes corresponding to the steel layer inside the three-layer structure. In this study, we also develop a specific tracking method for particular guided waves possessing large phase velocity variations over the considered frequency range, as is the case for the S0 mode of the steel sub-layer.","PeriodicalId":72045,"journal":{"name":"Acoustics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/acoustics4040061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the possibility of enhancement of the generation and detection of poorly energetic acoustic-guided waves in multilayered structures using a new design for a V(z) transducer. By defining a modified V(z) transducer composed of segmented piezoelectric elements, the acoustical energy can be directed towards specific angles in such a way as to generate guided waves that are poorly energetic. By comparing the results using this new design to those obtained with a classical V(z) transducer, it is shown that the generation and detection of such waves is greatly improved, especially for poorly energetic waves that belong to a buried layer in a multilayered structure. This is especially seen on the components of the spectra of V(z). The modeling of the modified V(z) signature for a multi-element focused transducer is widely detailed first. Then, in order to illustrate the advantages of our proposed method, a three-layer structure (aluminum/epoxy/steel) is discussed. The interest of this method for the characterization of elastic properties of “buried” layers through specific guided waves that are detected with great difficulty—or even not at all—with a classical V(z) transducer is demonstrated, especially for the A0 and S0 modes corresponding to the steel layer inside the three-layer structure. In this study, we also develop a specific tracking method for particular guided waves possessing large phase velocity variations over the considered frequency range, as is the case for the S0 mode of the steel sub-layer.