D. Guo, Jinkai Wang, Daochuan Ge, Chunhua Chen, Liwei Chen
{"title":"Oceanic Radionuclide Dispersion Method Investigation for Nonfixed Source from Marine Reactor Accident","authors":"D. Guo, Jinkai Wang, Daochuan Ge, Chunhua Chen, Liwei Chen","doi":"10.1155/2022/2822857","DOIUrl":null,"url":null,"abstract":"Radionuclide dispersion model, which is of critical importance to the emergency response of severe nuclear accident, is used to estimate the consequences arising from accidental or routine releases and to predict areas of high contamination. It is difficult to evaluate the radioactive consequence accurately and rapidly for the accidental release of radionuclides from marine reactor because of the complex mobility feature in the sea. Based on CFD method, a finite-volume, three-dimensional regional oceanic dispersion model was developed in this paper to simulate the dispersion of radionuclides originating from marine reactor. The simulated dose variation of 137Cs presented good agreement with the monitoring data of marine radioactive pollution caused by Fukushima Dai-ichi nuclear accident, which demonstrated the validity of the method. A severe accident scenario of marine reactor was simulated and analyzed, which indicates that the regional oceanic dispersion model can provide dose assessment for nuclear emergency response.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Nuclear Installations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/2822857","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Radionuclide dispersion model, which is of critical importance to the emergency response of severe nuclear accident, is used to estimate the consequences arising from accidental or routine releases and to predict areas of high contamination. It is difficult to evaluate the radioactive consequence accurately and rapidly for the accidental release of radionuclides from marine reactor because of the complex mobility feature in the sea. Based on CFD method, a finite-volume, three-dimensional regional oceanic dispersion model was developed in this paper to simulate the dispersion of radionuclides originating from marine reactor. The simulated dose variation of 137Cs presented good agreement with the monitoring data of marine radioactive pollution caused by Fukushima Dai-ichi nuclear accident, which demonstrated the validity of the method. A severe accident scenario of marine reactor was simulated and analyzed, which indicates that the regional oceanic dispersion model can provide dose assessment for nuclear emergency response.
期刊介绍:
Science and Technology of Nuclear Installations is an international scientific journal that aims to make available knowledge on issues related to the nuclear industry and to promote development in the area of nuclear sciences and technologies. The endeavor associated with the establishment and the growth of the journal is expected to lend support to the renaissance of nuclear technology in the world and especially in those countries where nuclear programs have not yet been developed.