{"title":"Design of mechanically advantaged glasses with hydration-induced stress profiles","authors":"Timothy M. Gross, Jingshi Wu","doi":"10.1111/ijag.16597","DOIUrl":null,"url":null,"abstract":"<p>The glass composition design work leading to the discovery of highly crack resistant glasses exhibiting hydration-induced stress profiles is described. Initial hydration studies on ternary aluminosilicate glasses show the importance of potassium for facilitating hydration. Further modification of the glass composition through the incorporation of P<sub>2</sub>O<sub>5</sub> increased the hydration rate such that a specimen with a 29-µm hydration depth was prepared by holding in an 85°C 85% relative humidity chamber for 65 days. Not only did this glass have a high Vickers indentation crack resistance of >20 kgf, but the sample also displayed considerable stored energy at failure. This indication of a stress profile was subsequently measured and a compressive stress (CS) of 400 MPa with a compressive depth of layer of 29 µm was found. The initially long process times were shortened using pressurized steam vessels. When held at 250°C and .3 MPa, samples can be prepared with surface CSs >300 MPa and compressive depths >30 µm in less than 8 h.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 1","pages":"18-26"},"PeriodicalIF":2.1000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16597","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 1
Abstract
The glass composition design work leading to the discovery of highly crack resistant glasses exhibiting hydration-induced stress profiles is described. Initial hydration studies on ternary aluminosilicate glasses show the importance of potassium for facilitating hydration. Further modification of the glass composition through the incorporation of P2O5 increased the hydration rate such that a specimen with a 29-µm hydration depth was prepared by holding in an 85°C 85% relative humidity chamber for 65 days. Not only did this glass have a high Vickers indentation crack resistance of >20 kgf, but the sample also displayed considerable stored energy at failure. This indication of a stress profile was subsequently measured and a compressive stress (CS) of 400 MPa with a compressive depth of layer of 29 µm was found. The initially long process times were shortened using pressurized steam vessels. When held at 250°C and .3 MPa, samples can be prepared with surface CSs >300 MPa and compressive depths >30 µm in less than 8 h.
期刊介绍:
The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.