J. Fernandez de Canete, D. Cuesta, A. Luque, J. Barbancho
{"title":"Physical modelling and computer simulation of the cardiorespiratory system based on the use of a combined electrical analogy","authors":"J. Fernandez de Canete, D. Cuesta, A. Luque, J. Barbancho","doi":"10.1080/13873954.2021.1977335","DOIUrl":null,"url":null,"abstract":"ABSTRACT Modelling the human cardiorespiratory system using computer simulation tools can serve to help physicians to comprehend the causes and development of cardiorespiratory diseases. The objective of this paper is to develop an integrated model of the cardiovascular and respiratory systems, along with their intrinsic control mechanisms, by combining analogous hydraulic-electric and diffusion-electric circuits, respectively. This modelling task is performed in object-oriented language in SIMSCAPE using the physical interconnected components to define the underlying dynamic equations. Simulation steady state results under rest and under variable physical exercise conditions, as well as under limiting conditions show a high qualitative agreement with clinical observations reported in literature. This object-oriented modelling approach, based on the combined use of electrical analogies, proves to be avaluable tool as a test bench for different strategies aimed to qualitative prediction of the effects of cardiorespiratory interactions during exercise, thus avoiding the formulation of complex mathematical models.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"27 1","pages":"453 - 488"},"PeriodicalIF":1.8000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2021.1977335","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Modelling the human cardiorespiratory system using computer simulation tools can serve to help physicians to comprehend the causes and development of cardiorespiratory diseases. The objective of this paper is to develop an integrated model of the cardiovascular and respiratory systems, along with their intrinsic control mechanisms, by combining analogous hydraulic-electric and diffusion-electric circuits, respectively. This modelling task is performed in object-oriented language in SIMSCAPE using the physical interconnected components to define the underlying dynamic equations. Simulation steady state results under rest and under variable physical exercise conditions, as well as under limiting conditions show a high qualitative agreement with clinical observations reported in literature. This object-oriented modelling approach, based on the combined use of electrical analogies, proves to be avaluable tool as a test bench for different strategies aimed to qualitative prediction of the effects of cardiorespiratory interactions during exercise, thus avoiding the formulation of complex mathematical models.
期刊介绍:
Mathematical and Computer Modelling of Dynamical Systems (MCMDS) publishes high quality international research that presents new ideas and approaches in the derivation, simplification, and validation of models and sub-models of relevance to complex (real-world) dynamical systems.
The journal brings together engineers and scientists working in different areas of application and/or theory where researchers can learn about recent developments across engineering, environmental systems, and biotechnology amongst other fields. As MCMDS covers a wide range of application areas, papers aim to be accessible to readers who are not necessarily experts in the specific area of application.
MCMDS welcomes original articles on a range of topics including:
-methods of modelling and simulation-
automation of modelling-
qualitative and modular modelling-
data-based and learning-based modelling-
uncertainties and the effects of modelling errors on system performance-
application of modelling to complex real-world systems.