{"title":"Event-Based Resilient Control of Multi-Agent Systems in Non-Ideal Communication Networks","authors":"Jianting Lyu, Lianghui Sun, Xin Wang, Dai Gao","doi":"10.3389/fcteg.2021.786318","DOIUrl":null,"url":null,"abstract":"This article focuses on the consensus problem of linear multi-agent systems under denial-of-service attacks and directed switching topologies. With only intermittent communication, the leader-following consensus can be preserved by fully distributed event-triggered strategies. Theoretical analysis shows that the proposed event-triggered resilient controller guarantees the exponential convergence in the presence of denial-of-service attacks and the exclusion of Zeno behavior. Compared to the existing studies where continuous communication between neighboring agents is required, the event-triggered data reduction scheme is provided to tackle the effects of denial-of-service attacks on directed switching topology as well as to avoid continuous communication and reduce energy consumption. The obtained results can be extended to the scenario without a leader. Numerical simulations are finally given to illustrate the effectiveness of the proposed method.","PeriodicalId":73076,"journal":{"name":"Frontiers in control engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in control engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fcteg.2021.786318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article focuses on the consensus problem of linear multi-agent systems under denial-of-service attacks and directed switching topologies. With only intermittent communication, the leader-following consensus can be preserved by fully distributed event-triggered strategies. Theoretical analysis shows that the proposed event-triggered resilient controller guarantees the exponential convergence in the presence of denial-of-service attacks and the exclusion of Zeno behavior. Compared to the existing studies where continuous communication between neighboring agents is required, the event-triggered data reduction scheme is provided to tackle the effects of denial-of-service attacks on directed switching topology as well as to avoid continuous communication and reduce energy consumption. The obtained results can be extended to the scenario without a leader. Numerical simulations are finally given to illustrate the effectiveness of the proposed method.