Fragmental descriptors in (Q)SAR: prediction of the assignment of organic compounds to pharmacological groups using the support vector machine approach

IF 1.7 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Russian Chemical Bulletin Pub Date : 2010-04-18 DOI:10.1007/s11172-009-0076-5
E. P. Kondratovich, N. I. Zhokhova, I. I. Baskin, V. A. Palyulin, N. S. Zefirov
{"title":"Fragmental descriptors in (Q)SAR: prediction of the assignment of organic compounds to pharmacological groups using the support vector machine approach","authors":"E. P. Kondratovich,&nbsp;N. I. Zhokhova,&nbsp;I. I. Baskin,&nbsp;V. A. Palyulin,&nbsp;N. S. Zefirov","doi":"10.1007/s11172-009-0076-5","DOIUrl":null,"url":null,"abstract":"<p>The structure—activity classification models for prediction of the assignment of organic compounds to 40 pharmacological groups were constructed in the framework of the fragmental approach using the support vector machine technique, the Platt—Wu probabilistic model, and resampling procedure. The models constructed allow one to predict possible types of the side pharmacological effects of drugs.</p>","PeriodicalId":756,"journal":{"name":"Russian Chemical Bulletin","volume":"58 4","pages":"657 - 662"},"PeriodicalIF":1.7000,"publicationDate":"2010-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11172-009-0076-5","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Chemical Bulletin","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11172-009-0076-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

The structure—activity classification models for prediction of the assignment of organic compounds to 40 pharmacological groups were constructed in the framework of the fragmental approach using the support vector machine technique, the Platt—Wu probabilistic model, and resampling procedure. The models constructed allow one to predict possible types of the side pharmacological effects of drugs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
(Q)SAR中的片段描述符:使用支持向量机方法预测有机化合物对药理学组的分配
利用支持向量机技术、Platt-Wu概率模型和重采样程序,在片段方法的框架内构建了用于预测有机化合物分配到40个药理学组的结构-活性分类模型。所建立的模型允许人们预测药物副作用的可能类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Russian Chemical Bulletin
Russian Chemical Bulletin 化学-化学综合
CiteScore
2.70
自引率
47.10%
发文量
257
审稿时长
3-8 weeks
期刊介绍: Publishing nearly 500 original articles a year, by leading Scientists from Russia and throughout the world, Russian Chemical Bulletin is a prominent international journal. The coverage of the journal spans practically all areas of fundamental chemical research and is presented in five sections: General and Inorganic Chemistry; Physical Chemistry; Organic Chemistry; Organometallic Chemistry; Chemistry of Natural Compounds and Bioorganic Chemistry.
期刊最新文献
Reactions of 2-aryl-1-(vinylsulfonyl)pyrrolidines with diamines Oxidative cleavage of polysubstituted furans Phosphonium-iodonium ylides: from structural diversity to reaction versatility Complexes of electrically conducting polymers with macromolecular matrices Pd-catalyzed amination in the synthesis of novel polyamino-substituted 2,3-diphenylquinoxalines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1