A new two-parameter estimator for the inverse Gaussian regression model with application in chemometrics

IF 0.6 Q4 STATISTICS & PROBABILITY Electronic Journal of Applied Statistical Analysis Pub Date : 2019-10-14 DOI:10.1285/I20705948V12N2P453
Rehad Shamany, Nada Nazar Alobaidi, Z. Algamal
{"title":"A new two-parameter estimator for the inverse Gaussian regression model with application in chemometrics","authors":"Rehad Shamany, Nada Nazar Alobaidi, Z. Algamal","doi":"10.1285/I20705948V12N2P453","DOIUrl":null,"url":null,"abstract":"The presence of multicollinearity among the explanatory variables has undesirable effects on the maximum likelihood estimator (MLE). The inverse Gaussian regression (IGR) model is a well-known model in application when the response variable positively skewed. To address the problem of multicollinearity, a two-parameter estimator is proposed (TPE). The TPE enjoys the advantage that its mean squared error (MSE) is less than MLE. The TPE is derived and the performance of this estimator is investigated under several conditions. Monte Carlo simulation results indicate that the proposed estimator performs better than the MLE estimator in terms of MSE. Furthermore, a real chemometrics dataset application is utilized and the results demonstrate the excellent performance of the suggested estimator when the multicollinearity is present in IGR model.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"12 1","pages":"453-464"},"PeriodicalIF":0.6000,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1285/I20705948V12N2P453","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V12N2P453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 13

Abstract

The presence of multicollinearity among the explanatory variables has undesirable effects on the maximum likelihood estimator (MLE). The inverse Gaussian regression (IGR) model is a well-known model in application when the response variable positively skewed. To address the problem of multicollinearity, a two-parameter estimator is proposed (TPE). The TPE enjoys the advantage that its mean squared error (MSE) is less than MLE. The TPE is derived and the performance of this estimator is investigated under several conditions. Monte Carlo simulation results indicate that the proposed estimator performs better than the MLE estimator in terms of MSE. Furthermore, a real chemometrics dataset application is utilized and the results demonstrate the excellent performance of the suggested estimator when the multicollinearity is present in IGR model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高斯逆回归模型的一种新的双参数估计量及其在化学计量学中的应用
解释变量之间多重共线性的存在会对极大似然估计量(MLE)产生不良影响。逆高斯回归(IGR)模型是响应变量正偏斜时的一个广为人知的应用模型。为了解决多重共线性问题,提出了一种双参数估计器(TPE)。TPE的优点是其均方误差(MSE)小于MLE。推导了TPE,并在几种条件下研究了该估计器的性能。蒙特卡罗仿真结果表明,该估计器在MSE方面优于MLE估计器。此外,利用一个实际的化学计量数据集应用,结果表明,当IGR模型中存在多重共线性时,所提出的估计器具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
期刊最新文献
Exploratory Data Analysis of Accuracy of US Weather Forecastes Extended asymmetry model based on logit transformation and decomposition of symmetry for square contingency tables with ordered categories Generalized Quasi Lindley Distribution: Theoretical Properties, Estimation Methods, and Applications Almost unbiased ridge estimator in the count data regression models Does the elimination of work flexibility contribute to reducing wage inequality? Empirical evidence from Ecuador
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1