{"title":"Development of a climate-niche model to evaluate spatiotemporal trends in Placopecten magellanicus distribution in the Gulf of Maine, USA","authors":"M. Torre, Kisei R. Tanaka, Y. Chen","doi":"10.2960/J.V50.M721","DOIUrl":null,"url":null,"abstract":"We developed a climate-niche species distribution model to evaluate spatiotemporal trends in Atlantic sea scallop (Placopecten magellanicus) along the coastal waters of the Gulf of Maine. We used a Tweedie-generalized additive model (GAM) to quantify the relationships between scallop abundance and key environmental variables. A boosted regression tree was used to identify significant interactions among environmental variables to integrate within the Tweedie GAM and a regional circulation model was incorporated with the Tweedie GAM to hindcast projections of scallop distribution and assess the impacts of environmental change on this species. Additionally, we evaluate two common model fitting and variable selection methods for GAMs to ensure high model performance. A classic backward variable selection procedure was compared to penalized thin plate regression splines. Projections from the climate-niche species distribution model show higher scallop density along inshore areas relative to those farther offshore. An increasing temporal trend in scallop density was observed along inshore areas and a decreasing temporal trend was observed in areas farther offshore. Additionally, we found that the GAM incorporating thin plate regression splines outperformed the widely used backwards stepwise procedure. This modeling framework will help to inform adaptive management strategies for the scallop fishery within the context of a changing Gulf of Maine ecosystem.","PeriodicalId":16669,"journal":{"name":"Journal of Northwest Atlantic Fishery Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Northwest Atlantic Fishery Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2960/J.V50.M721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 7
Abstract
We developed a climate-niche species distribution model to evaluate spatiotemporal trends in Atlantic sea scallop (Placopecten magellanicus) along the coastal waters of the Gulf of Maine. We used a Tweedie-generalized additive model (GAM) to quantify the relationships between scallop abundance and key environmental variables. A boosted regression tree was used to identify significant interactions among environmental variables to integrate within the Tweedie GAM and a regional circulation model was incorporated with the Tweedie GAM to hindcast projections of scallop distribution and assess the impacts of environmental change on this species. Additionally, we evaluate two common model fitting and variable selection methods for GAMs to ensure high model performance. A classic backward variable selection procedure was compared to penalized thin plate regression splines. Projections from the climate-niche species distribution model show higher scallop density along inshore areas relative to those farther offshore. An increasing temporal trend in scallop density was observed along inshore areas and a decreasing temporal trend was observed in areas farther offshore. Additionally, we found that the GAM incorporating thin plate regression splines outperformed the widely used backwards stepwise procedure. This modeling framework will help to inform adaptive management strategies for the scallop fishery within the context of a changing Gulf of Maine ecosystem.
期刊介绍:
The journal focuses on environmental, biological, economic and social science aspects of living marine resources and ecosystems of the northwest Atlantic Ocean. It also welcomes inter-disciplinary fishery-related papers and contributions of general applicability.