Production optimization in Well A and Well B using electric submersible pump (ESP)

Weny Astuti, Wahyu Tri Mulyono
{"title":"Production optimization in Well A and Well B using electric submersible pump (ESP)","authors":"Weny Astuti, Wahyu Tri Mulyono","doi":"10.25299/jeee.2023.13957","DOIUrl":null,"url":null,"abstract":"This research discusses the optimization of production carried out in Well A and Well B. The two Wells are production Well with three production layers (multilayer) that have different characteristics for each layer. Based on the performance evaluation of the production Wells, it’s known that Well A and Well B are no longer able to produce naturally (natural flow). Therefore, it’s necessary to have an artificial lift in order to be able to produce.The artificial lift method used for Well A and Well B is to install an electric submersible pump (ESP), because based on the screening criteria of artificial lift, both Wells can use an electric submersible pump. It’s known that Well A has an absolute open flow (AOF) value of 5840 stb/d and Well B of 3874 stb/d. The production optimization carried out has a production target of 70% of the absolute open flow value. Therefore, the selection of the electric submersible pump for each Well must have an operating flowrate that is in accordance with the production target of the two Wells and must perform a sensitivity test on the selected electric submersible pump to obtain the optimal scenario. So that, the electric submersible pump design for Well A is REDA D4300N with operating frequency of 60 hz and 156 stages, while for Well B is REDA DN3100 with operating frequency of 70 hz and 188 stages.","PeriodicalId":33635,"journal":{"name":"Journal of Earth Energy Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth Energy Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25299/jeee.2023.13957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research discusses the optimization of production carried out in Well A and Well B. The two Wells are production Well with three production layers (multilayer) that have different characteristics for each layer. Based on the performance evaluation of the production Wells, it’s known that Well A and Well B are no longer able to produce naturally (natural flow). Therefore, it’s necessary to have an artificial lift in order to be able to produce.The artificial lift method used for Well A and Well B is to install an electric submersible pump (ESP), because based on the screening criteria of artificial lift, both Wells can use an electric submersible pump. It’s known that Well A has an absolute open flow (AOF) value of 5840 stb/d and Well B of 3874 stb/d. The production optimization carried out has a production target of 70% of the absolute open flow value. Therefore, the selection of the electric submersible pump for each Well must have an operating flowrate that is in accordance with the production target of the two Wells and must perform a sensitivity test on the selected electric submersible pump to obtain the optimal scenario. So that, the electric submersible pump design for Well A is REDA D4300N with operating frequency of 60 hz and 156 stages, while for Well B is REDA DN3100 with operating frequency of 70 hz and 188 stages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电潜泵在A井和B井的生产优化
本研究讨论了A井和B井的生产优化。这两口井是具有三个生产层(多层)的生产井,每个生产层具有不同的特性。根据生产井的性能评估,已知A井和B井不再能够自然生产(自然流)。因此,为了能够生产,有必要进行人工举升。A井和B井采用的人工举升方法是安装电潜泵,因为根据人工举升的筛选标准,两口井都可以使用电潜泵。已知A井的绝对无阻流量(AOF)值为5840 stb/d,B井为3874 stb/d。所进行的生产优化的生产目标为绝对开放流量值的70%。因此,为每口井选择的电潜泵必须具有符合两口井生产目标的操作流量,并且必须对所选电潜泵进行灵敏度测试,以获得最佳方案。因此,A井的电潜泵设计为REDA D4300N,工作频率为60赫兹,为156级;B井的电潜水泵设计为REDA DN3100,工作频率70赫兹,为188级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
期刊最新文献
APPLICATION OF PSO-LSSVM IN PREDICTION AND ANALYSIS OF SLOW DRILLING (RATE OF PENETRATION) EVALUATION OF CONTINUOUS AND WATER ALTERNATING GAS (WAG) CO2 INJECTION ON X FIELD RECOVERY FACTOR The Effect of Different Gas Water Ratio on Recovery Factor and CO2 Storage Capacity in Water Alternating Gas Injection. A Case Study: “V” Field Development, North Sea Oil Formation Volume Factor Prediction Using Artificial Neural Network: A Case Study of Niger Delta Crudes Fracturing Fluid Optimization in Limestone Formation Using Guar Gum Crosslinked Fluid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1