QDG-SRAM Simulation Using Physics-Based Models of QDG-FET and QDG-Inverter

R. Mays, B. Khan, R. Gudlavalleti, F. Papadimitrakopoulos, E. Heller, F. Jain
{"title":"QDG-SRAM Simulation Using Physics-Based Models of QDG-FET and QDG-Inverter","authors":"R. Mays, B. Khan, R. Gudlavalleti, F. Papadimitrakopoulos, E. Heller, F. Jain","doi":"10.1142/s0129156422400110","DOIUrl":null,"url":null,"abstract":"This paper investigates the underlying physics of a SRAM device utilizing three-state Quantum Dot Gate (QDG) FETs by building up the physics from the general QDG-FET, its relation to the QDG-Inverter, and ultimately, the QDG-SRAM. The resulting equations from the exploration of the device physics were utilized to create a simulation within SIMULINK. From the simulation, it was found that in addition to being able to store the “1” and “0” states that are customary for an SRAM device, there is also the ability to store an intermediate state and a pseudo-state as a result of the intermediate state, allowing for the possibility of a 2-bit SRAM device in the same spatial constraints of a conventional SRAM unit cell. Additionally, the experimental results of the QDG-SRAM half-cell and the implications of utilizing a 4 state device to create either a 4 state SRAM cell or a 6 state SRAM cell with two pseudo-states are also discussed.","PeriodicalId":35778,"journal":{"name":"International Journal of High Speed Electronics and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Speed Electronics and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129156422400110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the underlying physics of a SRAM device utilizing three-state Quantum Dot Gate (QDG) FETs by building up the physics from the general QDG-FET, its relation to the QDG-Inverter, and ultimately, the QDG-SRAM. The resulting equations from the exploration of the device physics were utilized to create a simulation within SIMULINK. From the simulation, it was found that in addition to being able to store the “1” and “0” states that are customary for an SRAM device, there is also the ability to store an intermediate state and a pseudo-state as a result of the intermediate state, allowing for the possibility of a 2-bit SRAM device in the same spatial constraints of a conventional SRAM unit cell. Additionally, the experimental results of the QDG-SRAM half-cell and the implications of utilizing a 4 state device to create either a 4 state SRAM cell or a 6 state SRAM cell with two pseudo-states are also discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于QDG-FET和qdg -逆变器物理模型的QDG-SRAM仿真
本文研究了利用三态量子点门(QDG)场效应管的SRAM器件的底层物理,从一般的QDG- fet,它与QDG-逆变器的关系,以及最终的QDG-SRAM建立物理。从设备物理探索得到的方程被用来在SIMULINK中创建一个模拟。从模拟中,发现除了能够存储SRAM设备习惯的“1”和“0”状态外,还能够存储中间状态和中间状态的伪状态,从而允许在传统SRAM单元单元的相同空间约束中存储2位SRAM设备的可能性。此外,还讨论了QDG-SRAM半电池的实验结果,以及利用4态器件创建4态SRAM电池或具有两个伪态的6态SRAM电池的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of High Speed Electronics and Systems
International Journal of High Speed Electronics and Systems Engineering-Electrical and Electronic Engineering
CiteScore
0.60
自引率
0.00%
发文量
22
期刊介绍: Launched in 1990, the International Journal of High Speed Electronics and Systems (IJHSES) has served graduate students and those in R&D, managerial and marketing positions by giving state-of-the-art data, and the latest research trends. Its main charter is to promote engineering education by advancing interdisciplinary science between electronics and systems and to explore high speed technology in photonics and electronics. IJHSES, a quarterly journal, continues to feature a broad coverage of topics relating to high speed or high performance devices, circuits and systems.
期刊最新文献
Electrical Equipment Knowledge Graph Embedding Using Language Model with Self-learned Prompts Evaluation of Dynamic and Static Balance Ability of Athletes Based on Computer Vision Technology Analysis of Joint Injury Prevention in Basketball Overload Training Based on Adjustable Embedded Systems A Comprehensive Study and Comparison of 2-Bit 7T–10T SRAM Configurations with 4-State CMOS-SWS Inverters Complete Ensemble Empirical Mode Decomposition with Adaptive Noise to Extract Deep Information of Bearing Fault in Steam Turbines via Deep Belief Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1