Convergent evolution of spherical shells in Miocene planktonic foraminifera documents the parallel emergence of a complex character in response to environmental forcing
Pe´ter Kiss, N. Hudáčková, J. Titschack, M. Siccha, Z. Hermanova, Lóránd Silye, Andrej Ruman, S. Rybár, M. Kučera
{"title":"Convergent evolution of spherical shells in Miocene planktonic foraminifera documents the parallel emergence of a complex character in response to environmental forcing","authors":"Pe´ter Kiss, N. Hudáčková, J. Titschack, M. Siccha, Z. Hermanova, Lóránd Silye, Andrej Ruman, S. Rybár, M. Kučera","doi":"10.1017/pab.2022.48","DOIUrl":null,"url":null,"abstract":"Abstract. The spherical encompassing final chamber of the planktonic foraminifera Orbulina universa is a prime example of a complex character whose evolution has been documented by a sequence of intermediate forms. However, the mechanism that induced evolution of the spherical chamber remain unclear. Here we show that shortly after the emergence of Orbulina, documented throughout the oceans, a convergent evolutionary transition occurred in the semi-isolated Paratethys, leading to the emergence of the endemic Velapertina, which occupied a similar niche to Orbulina in the surface waters. Using X-ray computed tomography scanning, we show that the evolution of the encompassing final chamber involved the same sequence of steps in both lineages, combining a progressively spherical shell shape with changes in the position, number, and sizes of apertures. The similarity in the sequence of character acquisitions suggests structural determinism in the way foraminiferal shells are constructed and the presence of natural selection favoring a spherical morphology. Collectively, the emergence of spherical chambers in the two lineages at a similar time suggests that the evolution of this spectacular complex character occurred in response to a singular environmental driver.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/pab.2022.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. The spherical encompassing final chamber of the planktonic foraminifera Orbulina universa is a prime example of a complex character whose evolution has been documented by a sequence of intermediate forms. However, the mechanism that induced evolution of the spherical chamber remain unclear. Here we show that shortly after the emergence of Orbulina, documented throughout the oceans, a convergent evolutionary transition occurred in the semi-isolated Paratethys, leading to the emergence of the endemic Velapertina, which occupied a similar niche to Orbulina in the surface waters. Using X-ray computed tomography scanning, we show that the evolution of the encompassing final chamber involved the same sequence of steps in both lineages, combining a progressively spherical shell shape with changes in the position, number, and sizes of apertures. The similarity in the sequence of character acquisitions suggests structural determinism in the way foraminiferal shells are constructed and the presence of natural selection favoring a spherical morphology. Collectively, the emergence of spherical chambers in the two lineages at a similar time suggests that the evolution of this spectacular complex character occurred in response to a singular environmental driver.