{"title":"Prediction of the Time to Failure of Boiler Tubes Flawed with Localized Erosion","authors":"I. E. Kalu, H. Inglis, Schalk Kok","doi":"10.1115/1.4056606","DOIUrl":null,"url":null,"abstract":"\n A failure mechanism prevalent with boiler tubes operating in harsh environmental conditions is localized erosion. The consequence of the erosion mechanism is a substantial reduction of the tube thickness, ultimately leading to plastic collapse and consequently rupturing of the tubes. Locating and repairing all the affected tubes within the boiler is time consuming and expensive. It will be worthwhile to rank all the identified flaws so that critical flaws that cannot survive till the next scheduled shutdown are prioritized for repair. Consequently, nonlinear structural analysis was conducted on various boiler tubes that failed by localized erosion. The tubes had a wide range of localized erosion flaws that required a detailed assessment technique. The failure was evaluated numerically using various stress and strain-based failure criteria as well as performing the American Petroleum Institute and the American Society of Mechanical Engineers (API-ASME) fitness-for-service (FFS) assessment on the tubes. A projected time to failure ( P_t) for each tube based on the various criteria used in this study was determined. This enabled the ranking of the flawed tubes based on the priority of their repair. The outcome of this study demonstrates the potential for a tool which will enable industry users to prioritise the replacement or repair of critically flawed tubes and avert replacing tubes that are still safe for future operation.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056606","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
A failure mechanism prevalent with boiler tubes operating in harsh environmental conditions is localized erosion. The consequence of the erosion mechanism is a substantial reduction of the tube thickness, ultimately leading to plastic collapse and consequently rupturing of the tubes. Locating and repairing all the affected tubes within the boiler is time consuming and expensive. It will be worthwhile to rank all the identified flaws so that critical flaws that cannot survive till the next scheduled shutdown are prioritized for repair. Consequently, nonlinear structural analysis was conducted on various boiler tubes that failed by localized erosion. The tubes had a wide range of localized erosion flaws that required a detailed assessment technique. The failure was evaluated numerically using various stress and strain-based failure criteria as well as performing the American Petroleum Institute and the American Society of Mechanical Engineers (API-ASME) fitness-for-service (FFS) assessment on the tubes. A projected time to failure ( P_t) for each tube based on the various criteria used in this study was determined. This enabled the ranking of the flawed tubes based on the priority of their repair. The outcome of this study demonstrates the potential for a tool which will enable industry users to prioritise the replacement or repair of critically flawed tubes and avert replacing tubes that are still safe for future operation.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.