Aerial Robots for Contact-Based Ultrasonic Thickness Measurements for Field Inspections

IF 0.5 4区 材料科学 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Evaluation Pub Date : 2021-07-01 DOI:10.32548/2021.ME-04213
Robert L. Dahlstrom
{"title":"Aerial Robots for Contact-Based Ultrasonic Thickness Measurements for Field Inspections","authors":"Robert L. Dahlstrom","doi":"10.32548/2021.ME-04213","DOIUrl":null,"url":null,"abstract":"Aerial robotic systems, also referred to as drones, enable the collection of data on a scale and scope heretofore unimaginable. Field inspections at industrial sites using an aerial robotic inspection system that makes physical contact with a structure or asset as part of a nondestructive testing (NDT) or nondestructive evaluation (NDE) routine is safer than placing humans at elevation and enables more data to be gathered in less time. These aerial robotic systems are highly extensible and agile enabling safer, faster, and better inspections. Robotic inspection systems are forecast to grow exponentially this decade and beyond, as asset owners and service providers realize their economic value creation, increased data collection, and safety contributions.","PeriodicalId":49876,"journal":{"name":"Materials Evaluation","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32548/2021.ME-04213","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Aerial robotic systems, also referred to as drones, enable the collection of data on a scale and scope heretofore unimaginable. Field inspections at industrial sites using an aerial robotic inspection system that makes physical contact with a structure or asset as part of a nondestructive testing (NDT) or nondestructive evaluation (NDE) routine is safer than placing humans at elevation and enables more data to be gathered in less time. These aerial robotic systems are highly extensible and agile enabling safer, faster, and better inspections. Robotic inspection systems are forecast to grow exponentially this decade and beyond, as asset owners and service providers realize their economic value creation, increased data collection, and safety contributions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于现场检测的接触式超声厚度测量的航空机器人
空中机器人系统,也被称为无人机,能够以迄今无法想象的规模和范围收集数据。作为无损检测(NDT)或无损评估(NDE)常规的一部分,在工业现场使用空中机器人检测系统与结构或资产进行物理接触,这比将人员放在高处更安全,并且可以在更短的时间内收集更多数据。这些空中机器人系统具有高度可扩展性和灵活性,可以实现更安全、更快和更好的检查。随着资产所有者和服务提供商意识到他们创造的经济价值、增加的数据收集和安全贡献,机器人检测系统预计将在未来十年及以后呈指数级增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Evaluation
Materials Evaluation 工程技术-材料科学:表征与测试
CiteScore
0.90
自引率
16.70%
发文量
35
审稿时长
6-12 weeks
期刊介绍: Materials Evaluation publishes articles, news and features intended to increase the NDT practitioner’s knowledge of the science and technology involved in the field, bringing informative articles to the NDT public while highlighting the ongoing efforts of ASNT to fulfill its mission. M.E. is a peer-reviewed journal, relying on technicians and researchers to help grow and educate its members by providing relevant, cutting-edge and exclusive content containing technical details and discussions. The only periodical of its kind, M.E. is circulated to members and nonmember paid subscribers. The magazine is truly international in scope, with readers in over 90 nations. The journal’s history and archive reaches back to the earliest formative days of the Society.
期刊最新文献
Inverse Determination Of Interfacial Properties of a Bonded Structure Using Lamb Waves Generated By Laser Lateral Excitation Optimization and testing of a Mass Spectrometer Leak Detection (MSLD) system Nondestructive Analysis On 4D-Printed Hygroscopic Actuators Through Optical Flow-Based Displacement Measurements Experimental Study On Acoustic Emission Characteristics of SAP Mortar Self-Healing Process Microwave Real-Time and High-Resolution Imaging System Development for NDT Applications: A Chronology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1