A Novel Approach to Subpixel Land-Cover Change Detection Based on a Supervised Back-Propagation Neural Network for Remotely Sensed Images With Different Resolutions
{"title":"A Novel Approach to Subpixel Land-Cover Change Detection Based on a Supervised Back-Propagation Neural Network for Remotely Sensed Images With Different Resolutions","authors":"Ke Wu, Yanfei Zhong, Xianmin Wang, Weiwei Sun","doi":"10.1109/LGRS.2017.2733558","DOIUrl":null,"url":null,"abstract":"Extracting subpixel land-cover change detection (SLCCD) information is important when multitemporal remotely sensed images with different resolutions are available. The general steps are as follows. First, soft classification is applied to a low-resolution (LR) image to generate the proportion of each class. Second, the proportion differences are produced by the use of another high-resolution (HR) image and used as the input of subpixel mapping. Finally, a subpixel sharpened difference map can be generated. However, the prior HR land-cover map is only used to compare with the enhanced map of LR image for change detection, which leads to a nonideal SLCCD result. In this letter, we present a new approach based on a back-propagation neural network (BPNN) with a HR map (BPNN_HRM), in which a supervised model is introduced into SLCCD for the first time. The known information of the HR land-cover map is adequately employed to train the BPNN, whether it predates or postdates the LR image, so that a subpixel change detection map can be effectively generated. In order to evaluate the performance of the proposed algorithm, it was compared with four state-of-the-art methods. The experimental results confirm that the BPNN_HRM method outperforms the other traditional methods in providing a more detailed map for change detection.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"14 1","pages":"1750-1754"},"PeriodicalIF":4.0000,"publicationDate":"2017-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LGRS.2017.2733558","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LGRS.2017.2733558","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 20
Abstract
Extracting subpixel land-cover change detection (SLCCD) information is important when multitemporal remotely sensed images with different resolutions are available. The general steps are as follows. First, soft classification is applied to a low-resolution (LR) image to generate the proportion of each class. Second, the proportion differences are produced by the use of another high-resolution (HR) image and used as the input of subpixel mapping. Finally, a subpixel sharpened difference map can be generated. However, the prior HR land-cover map is only used to compare with the enhanced map of LR image for change detection, which leads to a nonideal SLCCD result. In this letter, we present a new approach based on a back-propagation neural network (BPNN) with a HR map (BPNN_HRM), in which a supervised model is introduced into SLCCD for the first time. The known information of the HR land-cover map is adequately employed to train the BPNN, whether it predates or postdates the LR image, so that a subpixel change detection map can be effectively generated. In order to evaluate the performance of the proposed algorithm, it was compared with four state-of-the-art methods. The experimental results confirm that the BPNN_HRM method outperforms the other traditional methods in providing a more detailed map for change detection.
期刊介绍:
IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.