γδ T cell costimulatory ligands in antitumor immunity

J. M. McGraw, D. Witherden
{"title":"γδ T cell costimulatory ligands in antitumor immunity","authors":"J. M. McGraw, D. Witherden","doi":"10.37349/ei.2022.00038","DOIUrl":null,"url":null,"abstract":"Antitumor immunity relies on the ability of T cells to recognize and kill tumor targets. γδ T cells are a specialized subset of T cells that predominantly localizes to non-lymphoid tissue such as the skin, gut, and lung where they are actively involved in tumor immunosurveillance. γδ T cells respond to self-stress ligands that are increased on many tumor cells, and these interactions provide costimulatory signals that promote their activation and cytotoxicity. This review will cover costimulatory molecules that are known to be critical for the function of γδ T cells with a specific focus on mouse dendritic epidermal T cells (DETC). DETC are a prototypic tissue-resident γδ T cell population with known roles in antitumor immunity and are therefore useful for identifying mechanisms that may control activation of other γδ T cell subsets within non-lymphoid tissues. This review concludes with a brief discussion on how γδ T cell costimulatory molecules can be targeted for improved cancer immunotherapy.","PeriodicalId":93552,"journal":{"name":"Exploration of immunology","volume":"2 1","pages":"79 - 97"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration of immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37349/ei.2022.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Antitumor immunity relies on the ability of T cells to recognize and kill tumor targets. γδ T cells are a specialized subset of T cells that predominantly localizes to non-lymphoid tissue such as the skin, gut, and lung where they are actively involved in tumor immunosurveillance. γδ T cells respond to self-stress ligands that are increased on many tumor cells, and these interactions provide costimulatory signals that promote their activation and cytotoxicity. This review will cover costimulatory molecules that are known to be critical for the function of γδ T cells with a specific focus on mouse dendritic epidermal T cells (DETC). DETC are a prototypic tissue-resident γδ T cell population with known roles in antitumor immunity and are therefore useful for identifying mechanisms that may control activation of other γδ T cell subsets within non-lymphoid tissues. This review concludes with a brief discussion on how γδ T cell costimulatory molecules can be targeted for improved cancer immunotherapy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
γδT细胞共刺激配体在抗肿瘤免疫中的作用
抗肿瘤免疫依赖于T细胞识别和杀死肿瘤靶点的能力。γδ T细胞是T细胞的一个特殊亚群,主要定位于非淋巴组织,如皮肤、肠道和肺,在那里它们积极参与肿瘤免疫监视。γδ T细胞对许多肿瘤细胞上增加的自应激配体作出反应,这些相互作用提供共刺激信号,促进其激活和细胞毒性。这篇综述将涵盖已知的对γδ T细胞功能至关重要的共刺激分子,并特别关注小鼠树突状表皮T细胞(DETC)。DETC是一种典型的组织内γδ T细胞群,已知在抗肿瘤免疫中起作用,因此可用于鉴定非淋巴组织中其他γδ T细胞亚群激活的控制机制。本文最后简要讨论了γδ T细胞共刺激分子如何靶向改善肿瘤免疫治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
Exploring the impact of immune response on tumor heterogeneity through mathematical modeling Recent advances in the study of the structure and function of the epididymis The immune response of nano carbon-based photic-driving vaccines to severe acute respiratory syndrome coronavirus 2 Targeted treatments for immune dysregulation in inborn errors of immunity Physical activity, immune system and hypertension: reflections and challenges for future pandemics based on learning from coronavirus disease 2019
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1