Amorphous Manganese–Cobalt Nanosheets as Efficient Catalysts for Hydrogen Evolution Reaction (HER)

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Catalysis Surveys from Asia Pub Date : 2021-08-18 DOI:10.1007/s10563-021-09342-8
Ding Cao, Yingying Dong, Ying Tang, Yaoyao Ye, Shui Hu, Zhenguo Guo, Xinhua Li
{"title":"Amorphous Manganese–Cobalt Nanosheets as Efficient Catalysts for Hydrogen Evolution Reaction (HER)","authors":"Ding Cao,&nbsp;Yingying Dong,&nbsp;Ying Tang,&nbsp;Yaoyao Ye,&nbsp;Shui Hu,&nbsp;Zhenguo Guo,&nbsp;Xinhua Li","doi":"10.1007/s10563-021-09342-8","DOIUrl":null,"url":null,"abstract":"<div><p>A facile and efficient electrocatalyst for hydrogen evolution reaction (HER) to produce hydrogen is very important for future energy. In this paper, amorphous manganese–cobalt nanosheets are successfully prepared by electrospinning on a foamed nickel substrate. It is found that the manganese (Mn) introduction in manganese–cobalt composites can simultaneously enhance their electrocatalytic performances. As a result, benefitting from the 3D structure, the self-supported Mn–Co hydroxides exhibits unprecedented HER activity with a relatively low overpotential of 100 mV at 10 mA cm<sup>−2</sup> and has a possibility for the large-scale production of hydrogen.</p><h3>Graphic Abstract</h3><p>Amorphous PVP/Mn<sub>4</sub>Co nanofibers formed by electrospinning on Ni foam (NF) has remarkable catalytic activity and stability for HER after operation for 6 h in 1 M KOH, with a low overpotential of 0.1 V at 100 mA cm<sup>−2</sup>, a low Tafel slope of 65.4 mV dec<sup>−1</sup>.</p>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"25 4","pages":"437 - 444"},"PeriodicalIF":2.1000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10563-021-09342-8","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-021-09342-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 7

Abstract

A facile and efficient electrocatalyst for hydrogen evolution reaction (HER) to produce hydrogen is very important for future energy. In this paper, amorphous manganese–cobalt nanosheets are successfully prepared by electrospinning on a foamed nickel substrate. It is found that the manganese (Mn) introduction in manganese–cobalt composites can simultaneously enhance their electrocatalytic performances. As a result, benefitting from the 3D structure, the self-supported Mn–Co hydroxides exhibits unprecedented HER activity with a relatively low overpotential of 100 mV at 10 mA cm−2 and has a possibility for the large-scale production of hydrogen.

Graphic Abstract

Amorphous PVP/Mn4Co nanofibers formed by electrospinning on Ni foam (NF) has remarkable catalytic activity and stability for HER after operation for 6 h in 1 M KOH, with a low overpotential of 0.1 V at 100 mA cm−2, a low Tafel slope of 65.4 mV dec−1.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无定形锰钴纳米片作为析氢反应的高效催化剂
一种简便、高效的析氢反应制氢电催化剂对未来能源发展具有重要意义。本文采用静电纺丝法在泡沫镍衬底上成功制备了非晶锰钴纳米片。在锰钴复合材料中引入锰(Mn)可以同时提高其电催化性能。因此,得益于三维结构,自支撑的Mn-Co氢氧化物表现出前所未有的HER活性,在10 mA cm - 2下的过电位相对较低,为100 mV,具有大规模生产氢气的可能性。在1 M KOH条件下,静电纺丝制备的无定形PVP/Mn4Co纳米纤维在100 mA cm−2下的过电位低至0.1 V, Tafel斜率低至65.4 mV dec−1,具有良好的HER催化活性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Catalysis Surveys from Asia
Catalysis Surveys from Asia 化学-物理化学
CiteScore
4.80
自引率
0.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.
期刊最新文献
Modified Montmorillonite Catalysed Ultrasonic Assisted one-pot Synthesis of Novel 2,3-dihydroisoxazolo[5,4-d] pyrimidin-4(7H)-ones as Potential Anticancer Agents Oxidized-Sulfur Decorated Two-Dimensional Cobalt(II) Porphyrin Covalent Organic Framework as a Photocatalyst and Proof-on Action Study in Oxidative Cyclization of Thioamide In-situ/Operando Mössbauer Spectroscopic Investigations of Fe-involved Metal Hydroxide-Based OER Electrocatalysts A Review on Graphene Oxide-Based Ferrite Nanocomposites for Catalytic Applications Progress on the Catalysts for the Gas-Phase Carbonylation Synthesis of Dimethyl Carbonate from Methyl Nitrite and CO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1