Majorana Zero Modes in Networks of Cooper-Pair Boxes: Topologically Ordered States and Topological Quantum Computation

IF 14.3 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Annual Review of Condensed Matter Physics Pub Date : 2020-03-10 DOI:10.1146/annurev-conmatphys-031218-013618
Y. Oreg, F. Oppen
{"title":"Majorana Zero Modes in Networks of Cooper-Pair Boxes: Topologically Ordered States and Topological Quantum Computation","authors":"Y. Oreg, F. Oppen","doi":"10.1146/annurev-conmatphys-031218-013618","DOIUrl":null,"url":null,"abstract":"Recent experimental progress introduced devices that can combine topological superconductivity with Coulomb-blockade effects. Experiments with these devices have already provided additional evidence for Majorana zero modes in proximity-coupled semiconductor wires. They also stimulated numerous ideas for how to exploit interactions between Majorana zero modes generated by Coulomb charging effects in networks of Majorana wires. Coulomb effects promise to become a powerful tool in the quest for a topological quantum computer as well as for driving topological superconductors into topologically ordered insulating states. Here, we present a focused review of these recent developments, including discussions of recent experiments, designs of topological qubits, Majorana-based implementations of universal quantum computation, and topological quantum error correction. Motivated by the analogy between a qubit and a spin-1/2 degree of freedom, we also review how coupling between Cooper-pair boxes leads to emergent topologically ordered insulating phases.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-031218-013618","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-031218-013618","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 41

Abstract

Recent experimental progress introduced devices that can combine topological superconductivity with Coulomb-blockade effects. Experiments with these devices have already provided additional evidence for Majorana zero modes in proximity-coupled semiconductor wires. They also stimulated numerous ideas for how to exploit interactions between Majorana zero modes generated by Coulomb charging effects in networks of Majorana wires. Coulomb effects promise to become a powerful tool in the quest for a topological quantum computer as well as for driving topological superconductors into topologically ordered insulating states. Here, we present a focused review of these recent developments, including discussions of recent experiments, designs of topological qubits, Majorana-based implementations of universal quantum computation, and topological quantum error correction. Motivated by the analogy between a qubit and a spin-1/2 degree of freedom, we also review how coupling between Cooper-pair boxes leads to emergent topologically ordered insulating phases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜对盒网络中的Majorana零模式:拓扑有序态和拓扑量子计算
最近的实验进展介绍了可以将拓扑超导性与库仑封锁效应结合起来的装置。这些器件的实验已经为接近耦合半导体线中的马约拉纳零模式提供了额外的证据。他们还激发了许多关于如何利用马约拉纳线网络中库仑充电效应产生的马约拉纳零模式之间相互作用的想法。库仑效应有望成为探索拓扑量子计算机以及驱动拓扑超导体进入拓扑有序绝缘状态的强大工具。在这里,我们重点回顾了这些最新的发展,包括最近实验的讨论,拓扑量子比特的设计,基于马约拉纳的通用量子计算实现,以及拓扑量子纠错。基于量子比特和自旋1/2自由度之间的类比,我们还回顾了库珀对盒之间的耦合如何导致出现拓扑有序的绝缘相。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Condensed Matter Physics
Annual Review of Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
47.40
自引率
0.90%
发文量
27
期刊介绍: Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.
期刊最新文献
Hydrodynamic Electronic Transport Evolution from Bardeen–Cooper–Schrieffer to Bose–Einstein Condensation in Two Dimensions: Crossovers and Topological Quantum Phase Transitions Fractional Statistics The Physics of Animal Behavior: Form, Function, and Interactions Physarum polycephalum: Smart Network Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1