Christopher Trudeau, Cynthia Tarlao, C. Guastavino
{"title":"Montreal soundscapes during the COVID-19 pandemic: A spatial analysis of noise complaints and residents’ surveys","authors":"Christopher Trudeau, Cynthia Tarlao, C. Guastavino","doi":"10.1515/noise-2022-0169","DOIUrl":null,"url":null,"abstract":"Abstract Public health measures during the COVID-19 pandemic provided researchers with a quasi-experimental situation to examine what happens when anthropogenic noise sources (e.g., traffic) are greatly reduced. This article combines noise-related calls to Montreal’s 311 service (29,891 calls from 2014 to 2022) with original survey data from 240 residents collected in 2020 after the lockdown and the summer reopening. The spatial analysis of the calls revealed that, across all pandemic phases, noise complaints increased with population density, the proportion of low-income residents, and the proportion of greenspace. However, the change in the spatial distribution of noise-related calls due to the pandemic measures is positively associated with the proportions of residential and greenspace land use. That is, areas with higher proportions of residential land use and greenspace experienced the greatest increase in noise-related calls. The analysis of the survey revealed that the sounds of traffic and construction decreased during both the lockdown and the subsequent reopening, while the sounds of the neighborhood and nature increased. However, the decreased traffic noise in the downtown core also allowed for the emergence of noise from the heating, ventilation and air conditioning systems in the area. We discuss these results considering the interest in reducing noise levels in cities.","PeriodicalId":44086,"journal":{"name":"Noise Mapping","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Mapping","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/noise-2022-0169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Public health measures during the COVID-19 pandemic provided researchers with a quasi-experimental situation to examine what happens when anthropogenic noise sources (e.g., traffic) are greatly reduced. This article combines noise-related calls to Montreal’s 311 service (29,891 calls from 2014 to 2022) with original survey data from 240 residents collected in 2020 after the lockdown and the summer reopening. The spatial analysis of the calls revealed that, across all pandemic phases, noise complaints increased with population density, the proportion of low-income residents, and the proportion of greenspace. However, the change in the spatial distribution of noise-related calls due to the pandemic measures is positively associated with the proportions of residential and greenspace land use. That is, areas with higher proportions of residential land use and greenspace experienced the greatest increase in noise-related calls. The analysis of the survey revealed that the sounds of traffic and construction decreased during both the lockdown and the subsequent reopening, while the sounds of the neighborhood and nature increased. However, the decreased traffic noise in the downtown core also allowed for the emergence of noise from the heating, ventilation and air conditioning systems in the area. We discuss these results considering the interest in reducing noise levels in cities.
期刊介绍:
Ever since its inception, Noise Mapping has been offering fast and comprehensive peer-review, while featuring prominent researchers among its Advisory Board. As a result, the journal is set to acquire a growing reputation as the main publication in the field of noise mapping, thus leading to a significant Impact Factor. The journal aims to promote and disseminate knowledge on noise mapping through the publication of high quality peer-reviewed papers focusing on the following aspects: noise mapping and noise action plans: case studies; models and algorithms for source characterization and outdoor sound propagation: proposals, applications, comparisons, round robin tests; local, national and international policies and good practices for noise mapping, planning, management and control; evaluation of noise mitigation actions; evaluation of environmental noise exposure; actions and communications to increase public awareness of environmental noise issues; outdoor soundscape studies and mapping; classification, evaluation and preservation of quiet areas.