Montreal soundscapes during the COVID-19 pandemic: A spatial analysis of noise complaints and residents’ surveys

IF 1.7 Q2 ACOUSTICS Noise Mapping Pub Date : 2023-01-01 DOI:10.1515/noise-2022-0169
Christopher Trudeau, Cynthia Tarlao, C. Guastavino
{"title":"Montreal soundscapes during the COVID-19 pandemic: A spatial analysis of noise complaints and residents’ surveys","authors":"Christopher Trudeau, Cynthia Tarlao, C. Guastavino","doi":"10.1515/noise-2022-0169","DOIUrl":null,"url":null,"abstract":"Abstract Public health measures during the COVID-19 pandemic provided researchers with a quasi-experimental situation to examine what happens when anthropogenic noise sources (e.g., traffic) are greatly reduced. This article combines noise-related calls to Montreal’s 311 service (29,891 calls from 2014 to 2022) with original survey data from 240 residents collected in 2020 after the lockdown and the summer reopening. The spatial analysis of the calls revealed that, across all pandemic phases, noise complaints increased with population density, the proportion of low-income residents, and the proportion of greenspace. However, the change in the spatial distribution of noise-related calls due to the pandemic measures is positively associated with the proportions of residential and greenspace land use. That is, areas with higher proportions of residential land use and greenspace experienced the greatest increase in noise-related calls. The analysis of the survey revealed that the sounds of traffic and construction decreased during both the lockdown and the subsequent reopening, while the sounds of the neighborhood and nature increased. However, the decreased traffic noise in the downtown core also allowed for the emergence of noise from the heating, ventilation and air conditioning systems in the area. We discuss these results considering the interest in reducing noise levels in cities.","PeriodicalId":44086,"journal":{"name":"Noise Mapping","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Mapping","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/noise-2022-0169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Public health measures during the COVID-19 pandemic provided researchers with a quasi-experimental situation to examine what happens when anthropogenic noise sources (e.g., traffic) are greatly reduced. This article combines noise-related calls to Montreal’s 311 service (29,891 calls from 2014 to 2022) with original survey data from 240 residents collected in 2020 after the lockdown and the summer reopening. The spatial analysis of the calls revealed that, across all pandemic phases, noise complaints increased with population density, the proportion of low-income residents, and the proportion of greenspace. However, the change in the spatial distribution of noise-related calls due to the pandemic measures is positively associated with the proportions of residential and greenspace land use. That is, areas with higher proportions of residential land use and greenspace experienced the greatest increase in noise-related calls. The analysis of the survey revealed that the sounds of traffic and construction decreased during both the lockdown and the subsequent reopening, while the sounds of the neighborhood and nature increased. However, the decreased traffic noise in the downtown core also allowed for the emergence of noise from the heating, ventilation and air conditioning systems in the area. We discuss these results considering the interest in reducing noise levels in cities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新冠肺炎大流行期间的蒙特利尔声景:噪音投诉和居民调查的空间分析
摘要新冠肺炎大流行期间的公共卫生措施为研究人员提供了一个准实验情况,以研究当人为噪声源(如交通)大幅减少时会发生什么。本文将蒙特利尔311服务的噪音相关电话(2014年至2022年为29891个电话)与2020年封锁和夏季重新开放后收集的240名居民的原始调查数据相结合。对电话的空间分析显示,在所有疫情阶段,噪音投诉都随着人口密度、低收入居民比例和绿地比例的增加而增加。然而,由于疫情措施,与噪音相关的呼叫的空间分布变化与住宅和绿地土地使用的比例呈正相关。也就是说,居住用地和绿地比例较高的地区,与噪音相关的电话增加最多。调查分析显示,在封锁和随后的重新开放期间,交通和建筑的声音都有所减少,而社区和自然的声音则有所增加。然而,市中心交通噪音的减少也使得该地区的供暖、通风和空调系统产生了噪音。考虑到人们对降低城市噪声水平的兴趣,我们讨论了这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Noise Mapping
Noise Mapping ACOUSTICS-
CiteScore
7.80
自引率
17.90%
发文量
5
审稿时长
12 weeks
期刊介绍: Ever since its inception, Noise Mapping has been offering fast and comprehensive peer-review, while featuring prominent researchers among its Advisory Board. As a result, the journal is set to acquire a growing reputation as the main publication in the field of noise mapping, thus leading to a significant Impact Factor. The journal aims to promote and disseminate knowledge on noise mapping through the publication of high quality peer-reviewed papers focusing on the following aspects: noise mapping and noise action plans: case studies; models and algorithms for source characterization and outdoor sound propagation: proposals, applications, comparisons, round robin tests; local, national and international policies and good practices for noise mapping, planning, management and control; evaluation of noise mitigation actions; evaluation of environmental noise exposure; actions and communications to increase public awareness of environmental noise issues; outdoor soundscape studies and mapping; classification, evaluation and preservation of quiet areas.
期刊最新文献
Three-dimensional visualisation of traffic noise based on the Henk de-Klujijver model Noise pollution and associated health impacts at Ganeshpeth Bus Terminus in Nagpur, India Reliability of smart noise pollution map Statistical modeling of traffic noise at intersections in a mid-sized city, India Case study on the audibility of siren-driven alert systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1