{"title":"Propagating Terraces and the Dynamics of\n Front-Like Solutions of Reaction-Diffusion Equations\n on ℝ","authors":"P. Polácik","doi":"10.1090/memo/1278","DOIUrl":null,"url":null,"abstract":"We consider semilinear parabolic equations of the form ut = uxx + f(u), x ∈ R, t > 0, where f a C1 function. Assuming that 0 and γ > 0 are constant steady states, we investigate the large-time behavior of the front-like solutions, that is, solutions u whose initial values u(x, 0) are near γ for x ≈ −∞ and near 0 for x ≈ ∞. If the steady states 0 and γ are both stable, our main theorem shows that at large times, the graph of u(·, t) is arbitrarily close to a propagating terrace (a system of stacked traveling fonts). We prove this result without requiring monotonicity of u(·, 0) or the nondegeneracy of zeros of f . The case when one or both of the steady states 0, γ is unstable is considered as well. As a corollary to our theorems, we show that all front-like solutions are quasiconvergent: their ω-limit sets with respect to the locally uniform convergence consist of steady states. In our proofs we employ phase plane analysis, intersection comparison (or, zero number) arguments, and a geometric method involving the spatial trajectories {(u(x, t), ux(x, t)) : x ∈ R}, t > 0, of the solutions in question.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"264 1","pages":"0-0"},"PeriodicalIF":2.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1278","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 36
Abstract
We consider semilinear parabolic equations of the form ut = uxx + f(u), x ∈ R, t > 0, where f a C1 function. Assuming that 0 and γ > 0 are constant steady states, we investigate the large-time behavior of the front-like solutions, that is, solutions u whose initial values u(x, 0) are near γ for x ≈ −∞ and near 0 for x ≈ ∞. If the steady states 0 and γ are both stable, our main theorem shows that at large times, the graph of u(·, t) is arbitrarily close to a propagating terrace (a system of stacked traveling fonts). We prove this result without requiring monotonicity of u(·, 0) or the nondegeneracy of zeros of f . The case when one or both of the steady states 0, γ is unstable is considered as well. As a corollary to our theorems, we show that all front-like solutions are quasiconvergent: their ω-limit sets with respect to the locally uniform convergence consist of steady states. In our proofs we employ phase plane analysis, intersection comparison (or, zero number) arguments, and a geometric method involving the spatial trajectories {(u(x, t), ux(x, t)) : x ∈ R}, t > 0, of the solutions in question.
期刊介绍:
Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.