Energy efficient multi-tasking for edge computing using federated learning

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Pervasive Computing and Communications Pub Date : 2022-07-08 DOI:10.1108/ijpcc-03-2022-0106
Mukesh Soni, N. Nayak, Ashima Kalra, S. Degadwala, Nikhil Kumar Singh, Shweta Singh
{"title":"Energy efficient multi-tasking for edge computing using federated learning","authors":"Mukesh Soni, N. Nayak, Ashima Kalra, S. Degadwala, Nikhil Kumar Singh, Shweta Singh","doi":"10.1108/ijpcc-03-2022-0106","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this paper is to improve the existing paradigm of edge computing to maintain a balanced energy usage.\n\n\nDesign/methodology/approach\nThe new greedy algorithm is proposed to balance the energy consumption in edge computing.\n\n\nFindings\nThe new greedy algorithm can balance energy more efficiently than the random approach by an average of 66.59 percent.\n\n\nOriginality/value\nThe results are shown in this paper which are better as compared to existing algorithms.\n","PeriodicalId":43952,"journal":{"name":"International Journal of Pervasive Computing and Communications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pervasive Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijpcc-03-2022-0106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose The purpose of this paper is to improve the existing paradigm of edge computing to maintain a balanced energy usage. Design/methodology/approach The new greedy algorithm is proposed to balance the energy consumption in edge computing. Findings The new greedy algorithm can balance energy more efficiently than the random approach by an average of 66.59 percent. Originality/value The results are shown in this paper which are better as compared to existing algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用联邦学习的边缘计算节能多任务
本文的目的是改进现有的边缘计算范式,以保持平衡的能源使用。设计/方法/方法为了平衡边缘计算中的能量消耗,提出了一种新的贪婪算法。结果贪心算法的能量平衡效率比随机算法平均高66.59%。与现有的算法相比,本文给出了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Pervasive Computing and Communications
International Journal of Pervasive Computing and Communications COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
6.60
自引率
0.00%
发文量
54
期刊最新文献
Big data challenges and opportunities in Internet of Vehicles: a systematic review Cooperative optimization techniques in distributed MAC protocols – a survey Novel communication system for buried water pipe monitoring using acoustic signal propagation along the pipe A new predictive approach for the MAC layer misbehavior in IEEE 802.11 networks Clustering based EO with MRF technique for effective load balancing in cloud computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1