Universal set of quantum gates for the flip-flop qubit in the presence of 1/f noise

IF 5.8 2区 物理与天体物理 Q1 OPTICS EPJ Quantum Technology Pub Date : 2022-01-18 DOI:10.1140/epjqt/s40507-022-00120-7
Elena Ferraro, Davide Rei, Matteo Paris, Marco De Michielis
{"title":"Universal set of quantum gates for the flip-flop qubit in the presence of 1/f noise","authors":"Elena Ferraro,&nbsp;Davide Rei,&nbsp;Matteo Paris,&nbsp;Marco De Michielis","doi":"10.1140/epjqt/s40507-022-00120-7","DOIUrl":null,"url":null,"abstract":"<div><p>Impurities hosted in semiconducting solid matrices represent an extensively studied platform for quantum computing applications. In this scenario, the so-called flip-flop qubit emerges as a convenient choice for scalable implementations in silicon. Flip-flop qubits are realized implanting phosphorous donor in isotopically purified silicon, and encoding the logical states in the donor nuclear spin and in its bound electron. Electrically modulating the hyperfine interaction by applying a vertical electric field causes an Electron Dipole Spin Resonance (EDSR) transition between the states with antiparallel spins <span>\\(\\{|\\downarrow \\Uparrow \\rangle ,|\\uparrow \\Downarrow \\rangle \\}\\)</span>, that are chosen as the logical states. When two qubits are considered, the dipole-dipole interaction is exploited to establish long-range coupling between them. A universal set of quantum gates for flip-flop qubits is here proposed and the effect of a realistic 1/f noise on the gate fidelity is investigated for the single qubit <span>\\(R_{z}(-\\frac{\\pi }{2})\\)</span> and Hadamard gate and for the two-qubit <span>\\(\\sqrt{\\mathit{iSWAP}}\\)</span> gate.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"9 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-022-00120-7","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-022-00120-7","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 5

Abstract

Impurities hosted in semiconducting solid matrices represent an extensively studied platform for quantum computing applications. In this scenario, the so-called flip-flop qubit emerges as a convenient choice for scalable implementations in silicon. Flip-flop qubits are realized implanting phosphorous donor in isotopically purified silicon, and encoding the logical states in the donor nuclear spin and in its bound electron. Electrically modulating the hyperfine interaction by applying a vertical electric field causes an Electron Dipole Spin Resonance (EDSR) transition between the states with antiparallel spins \(\{|\downarrow \Uparrow \rangle ,|\uparrow \Downarrow \rangle \}\), that are chosen as the logical states. When two qubits are considered, the dipole-dipole interaction is exploited to establish long-range coupling between them. A universal set of quantum gates for flip-flop qubits is here proposed and the effect of a realistic 1/f noise on the gate fidelity is investigated for the single qubit \(R_{z}(-\frac{\pi }{2})\) and Hadamard gate and for the two-qubit \(\sqrt{\mathit{iSWAP}}\) gate.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在存在1/f噪声的情况下,用于触发器量子比特的通用量子门
半导体固体基质中的杂质代表了量子计算应用的广泛研究平台。在这种情况下,所谓的触发器量子位作为在硅中可扩展实现的方便选择而出现。在同位素纯化的硅中植入磷给体,并对给体核自旋及其束缚电子中的逻辑态进行编码,实现了触发器量子比特。通过施加垂直电场对超精细相互作用进行电调制,可以在具有反平行自旋\(\{|\downarrow \Uparrow \rangle ,|\uparrow \Downarrow \rangle \}\)的状态之间产生电子偶极子自旋共振(EDSR)跃迁,这些状态被选为逻辑状态。当考虑两个量子比特时,利用偶极子-偶极子相互作用来建立它们之间的远程耦合。本文提出了一套用于触发器量子比特的通用量子门,并研究了1/f噪声对单量子位\(R_{z}(-\frac{\pi }{2})\)和Hadamard门以及双量子位\(\sqrt{\mathit{iSWAP}}\)门的门保真度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
期刊最新文献
An investigation of errors in ellipse-fitting for cold-atom interferometers Numerical model of N-level cascade systems for atomic Radio Frequency sensing applications Electromagnetic side-channel attack risk assessment on a practical quantum-key-distribution receiver based on multi-class classification KANQAS: Kolmogorov-Arnold Network for Quantum Architecture Search Generation of phonon quantum states and quantum correlations among single photon emitters in hexagonal boron nitride
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1