Characterization, dissolution and solubility of synthetic cadmium hydroxylapatite [Cd5(PO4)3OH] at 25–45°C

IF 0.9 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Geochemical Transactions Pub Date : 2015-07-18 DOI:10.1186/s12932-015-0025-1
Yinian Zhu, Zongqiang Zhu, Xin Zhao, Yanpeng Liang, Liuqin Dai, Yanhua Huang
{"title":"Characterization, dissolution and solubility of synthetic cadmium hydroxylapatite [Cd5(PO4)3OH] at 25–45°C","authors":"Yinian Zhu,&nbsp;Zongqiang Zhu,&nbsp;Xin Zhao,&nbsp;Yanpeng Liang,&nbsp;Liuqin Dai,&nbsp;Yanhua Huang","doi":"10.1186/s12932-015-0025-1","DOIUrl":null,"url":null,"abstract":"<p>The substitution of Ca<sup>2+</sup> in Ca-hydroxylapatite by toxic Cd<sup>2+</sup> can cause the forming of Cd-hydroxylapatite and is a significant issue in a great variety of research areas, which hence needs an understanding of the essential physicochemical characteristics. Unfortunately, the solubility product and thermodynamic data for Cd-hydroxylapatite in water under a variety of conditions now are lacking. Little information has been reported by previous researchers. Additionally, the dissolution mechanism of Cd-hydroxylapatite has never been studied.</p><p>Dissolution of the synthetic cadmium hydroxylapatite [Cd-HAP, Cd<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>OH] in HNO<sub>3</sub> solution (pH?=?2), ultrapure water (pH?=?5.6) and NaOH solution (pH?=?9) was experimentally studied at 25, 35 and 45°C. Characterization by XRD, FT-IR and FE-SEM proved that Cd-HAP solids showed no recognizable change during dissolution. For the Cd-HAP dissolution in aqueous acidic media at initial pH 2 and 25°C, the solution cadmium and phosphate concentrations increased rapidly and reached the peak values after 20–30?days and 10?days reaction, respectively. Thereafter, the Cd-HAP dissolution rate decreased slowly, whereas the solution Cd/P molar ratio increased constantly from 1.65–1.69 to 6.61–6.76. The mean <i>K</i>\n <sub>sp</sub> values for Cd<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>OH were determined to be 10<sup>?64.62</sup> (10<sup>?64.53</sup>–10<sup>?64.71</sup>) at 25°C, 10<sup>?65.58</sup> (10<sup>?65.31</sup>–10<sup>?65.80</sup>) at 35°C and 10<sup>?66.57</sup> (10<sup>?66.24</sup>–10<sup>?66.90</sup>) at 45°C. Based on the obtained solubility data from the dissolution at initial pH 2 and 25°C, the Gibbs free energy of Cd<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>OH forming <span>\\(\\Delta G_{f}^{o}\\)</span> was determined to be ?3,970.47?kJ/mol (?3,969.92 to ?3,970.96?kJ/mol). Thermodynamic parameters, Δ<i>G</i>\n <sup>0</sup>, Δ<i>H</i>\n <sup>0</sup>, Δ<i>S</i>\n <sup>0</sup>, and <span>\\(\\Delta C_{\\text{p}}^{ 0}\\)</span> for the dissolution process of Cd-HAP in aqueous acidic media at initial pH 2 and 25°C were calculated 368,710.12?J/K?mol, ?158,809.54?J/mol, ?1,770.20 and ?869.53?J/K?mol, respectively.</p><p>Based on the experimental results of the present work and some previous researches, the cadmium hydroxylapatite (Cd-HAP) dissolution in aqueous media is considered to have the following coincident processes: the stoichiometric dissolution coupled with protonation and complexation reactions, the non-stoichiometric dissolution with Cd<sup>2+</sup> release and PO<sub>4</sub>\n <sup>3?</sup> sorption and the sorption of Cd<sup>2+</sup> and PO<sub>4</sub>\n <sup>3?</sup> species from solution backwards onto Cd-HAP surface. The obtained solubility products (<i>K</i>\n <sub>sp</sub>) 10<sup>?64.62</sup> (10<sup>?64.53</sup>–10<sup>?64.71</sup>) for Cd-HAP was approximately 7.62–5.62 log units lower than 10<sup>?57</sup>–10<sup>?59</sup> for calcium hydroxylapatite (Ca-HAP).</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"16 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2015-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-015-0025-1","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemical Transactions","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s12932-015-0025-1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 14

Abstract

The substitution of Ca2+ in Ca-hydroxylapatite by toxic Cd2+ can cause the forming of Cd-hydroxylapatite and is a significant issue in a great variety of research areas, which hence needs an understanding of the essential physicochemical characteristics. Unfortunately, the solubility product and thermodynamic data for Cd-hydroxylapatite in water under a variety of conditions now are lacking. Little information has been reported by previous researchers. Additionally, the dissolution mechanism of Cd-hydroxylapatite has never been studied.

Dissolution of the synthetic cadmium hydroxylapatite [Cd-HAP, Cd5(PO4)3OH] in HNO3 solution (pH?=?2), ultrapure water (pH?=?5.6) and NaOH solution (pH?=?9) was experimentally studied at 25, 35 and 45°C. Characterization by XRD, FT-IR and FE-SEM proved that Cd-HAP solids showed no recognizable change during dissolution. For the Cd-HAP dissolution in aqueous acidic media at initial pH 2 and 25°C, the solution cadmium and phosphate concentrations increased rapidly and reached the peak values after 20–30?days and 10?days reaction, respectively. Thereafter, the Cd-HAP dissolution rate decreased slowly, whereas the solution Cd/P molar ratio increased constantly from 1.65–1.69 to 6.61–6.76. The mean K sp values for Cd5(PO4)3OH were determined to be 10?64.62 (10?64.53–10?64.71) at 25°C, 10?65.58 (10?65.31–10?65.80) at 35°C and 10?66.57 (10?66.24–10?66.90) at 45°C. Based on the obtained solubility data from the dissolution at initial pH 2 and 25°C, the Gibbs free energy of Cd5(PO4)3OH forming \(\Delta G_{f}^{o}\) was determined to be ?3,970.47?kJ/mol (?3,969.92 to ?3,970.96?kJ/mol). Thermodynamic parameters, ΔG 0, ΔH 0, ΔS 0, and \(\Delta C_{\text{p}}^{ 0}\) for the dissolution process of Cd-HAP in aqueous acidic media at initial pH 2 and 25°C were calculated 368,710.12?J/K?mol, ?158,809.54?J/mol, ?1,770.20 and ?869.53?J/K?mol, respectively.

Based on the experimental results of the present work and some previous researches, the cadmium hydroxylapatite (Cd-HAP) dissolution in aqueous media is considered to have the following coincident processes: the stoichiometric dissolution coupled with protonation and complexation reactions, the non-stoichiometric dissolution with Cd2+ release and PO4 3? sorption and the sorption of Cd2+ and PO4 3? species from solution backwards onto Cd-HAP surface. The obtained solubility products (K sp) 10?64.62 (10?64.53–10?64.71) for Cd-HAP was approximately 7.62–5.62 log units lower than 10?57–10?59 for calcium hydroxylapatite (Ca-HAP).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成镉羟基磷灰石[Cd5(PO4)3OH]在25-45℃下的表征、溶解和溶解度
ca -羟基磷灰石中的Ca2+被有毒的Cd2+取代可导致cd -羟基磷灰石的形成,这是许多研究领域的一个重要问题,因此需要了解其基本的物理化学特性。遗憾的是,目前缺乏cd -羟基磷灰石在各种条件下在水中的溶解度积和热力学数据。以前的研究人员报道的信息很少。此外,cd -羟基磷灰石的溶解机理从未被研究过。实验研究了合成镉羟基磷灰石[Cd-HAP, Cd5(PO4)3OH]在HNO3溶液(pH = 2)、超纯水(pH = 5.6)和NaOH溶液(pH = 9)中在25℃、35℃和45℃下的溶解。XRD、FT-IR和FE-SEM表征表明Cd-HAP固体在溶解过程中没有明显的变化。Cd-HAP在初始pH为2、25℃的酸性水溶液中溶解时,溶液中镉和磷酸盐浓度迅速升高,在20 ~ 30℃时达到峰值。10天?日反应,分别。之后Cd- hap的溶解速率缓慢下降,而溶液Cd/P摩尔比从1.65 ~ 1.69不断增加到6.61 ~ 6.76。Cd5(PO4)3OH的平均K sp值在25℃时为10?64.62(10?64.53 ~ 10?64.71),在35℃时为10?65.58(10?65.31 ~ 10?65.80),在45℃时为10?66.57(10?66.24 ~ 10?66.90)。根据在初始pH值为2、初始温度为25℃条件下的溶解度数据,确定了Cd5(PO4)3OH形成\(\Delta G_{f}^{o}\)的吉布斯自由能为?kJ/mol(3,969.92 ~ 3,970.96)。计算Cd-HAP在酸性水介质中初始pH为2、25°C时溶解过程的热力学参数ΔG 0、ΔH 0、ΔS 0和\(\Delta C_{\text{p}}^{ 0}\)分别为368,710.12?J/K?Mol 158,809.54?J/mol, 1,770.20和869.53 J/K?分别是Mol。根据本工作的实验结果和前人的一些研究,认为镉羟基磷灰石(Cd-HAP)在水介质中的溶解具有以下重合过程:化学计量溶解与质子化和络合反应耦合,非化学计量溶解与Cd2+释放和PO4 3?以及Cd2+和PO4的吸附从溶液中倒向Cd-HAP表面的物质。Cd-HAP的溶解度产物(ksp)为10?64.62(10?64.53 ~ 10?64.71),比10?57 ~ 10?59羟基磷灰石钙(Ca-HAP)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochemical Transactions
Geochemical Transactions 地学-地球化学与地球物理
CiteScore
3.70
自引率
4.30%
发文量
2
审稿时长
>12 weeks
期刊介绍: Geochemical Transactions publishes high-quality research in all areas of chemistry as it relates to materials and processes occurring in terrestrial and extraterrestrial systems.
期刊最新文献
Silicate coprecipitation reduces green rust crystal size and limits dissolution-precipitation during air oxidation Development of the Arabian-Nubian Shield along the Marsa Alam-Idfu transect, Central-Eastern Desert, Egypt: geochemical implementation of zircon U-Pb geochronology Probing atomic-scale processes at the ferrihydrite-water interface with reactive molecular dynamics Water quality assessment of Upper Ganga and Yamuna river systems during COVID-19 pandemic-induced lockdown: imprints of river rejuvenation Effect of Mn2+ concentration on the growth of δ-MnO2 crystals under acidic conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1