O. J. Peter, A. F. Adebisi, M. O. Ajisope, F. O. Ajibade, A. I. Abioye, F. Oguntolu
{"title":"Global Stability Analysis of Typhoid Fever Model","authors":"O. J. Peter, A. F. Adebisi, M. O. Ajisope, F. O. Ajibade, A. I. Abioye, F. Oguntolu","doi":"10.25728/ASSA.2020.20.2.792","DOIUrl":null,"url":null,"abstract":"We analyze with four compartments a deterministic nonlinear mathematical model of typhoid fever transmission dynamics. Using the Lipchitz condition, we verified the existence and uniqueness of the model solutions to establish the validity of the model and derive the equilibria states of the model, i.e. disease-free equilibrium (DFE) and endemic equilibrium (EE). The computed basic reproductive number R0 was used to establish that the disease-free equilibrium is globally asymptotically stable when its numerical values are less than one while the endemic equilibrium is locally asymptotically stable when its values are greater than one. In addition, the Lyapunov function was applied to investigate the stability property for the (DFE). The model was numerically simulated to validate the results of the analysis.","PeriodicalId":39095,"journal":{"name":"Advances in Systems Science and Applications","volume":"20 1","pages":"20-31"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Systems Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25728/ASSA.2020.20.2.792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6
Abstract
We analyze with four compartments a deterministic nonlinear mathematical model of typhoid fever transmission dynamics. Using the Lipchitz condition, we verified the existence and uniqueness of the model solutions to establish the validity of the model and derive the equilibria states of the model, i.e. disease-free equilibrium (DFE) and endemic equilibrium (EE). The computed basic reproductive number R0 was used to establish that the disease-free equilibrium is globally asymptotically stable when its numerical values are less than one while the endemic equilibrium is locally asymptotically stable when its values are greater than one. In addition, the Lyapunov function was applied to investigate the stability property for the (DFE). The model was numerically simulated to validate the results of the analysis.
期刊介绍:
Advances in Systems Science and Applications (ASSA) is an international peer-reviewed open-source online academic journal. Its scope covers all major aspects of systems (and processes) analysis, modeling, simulation, and control, ranging from theoretical and methodological developments to a large variety of application areas. Survey articles and innovative results are also welcome. ASSA is aimed at the audience of scientists, engineers and researchers working in the framework of these problems. ASSA should be a platform on which researchers will be able to communicate and discuss both their specialized issues and interdisciplinary problems of systems analysis and its applications in science and industry, including data science, artificial intelligence, material science, manufacturing, transportation, power and energy, ecology, corporate management, public governance, finance, and many others.