Real-estate price prediction with deep neural network and principal component analysis

F. Mostofi, V. Toğan, H. B. Başağa
{"title":"Real-estate price prediction with deep neural network and principal component analysis","authors":"F. Mostofi, V. Toğan, H. B. Başağa","doi":"10.2478/otmcj-2022-0016","DOIUrl":null,"url":null,"abstract":"Abstract Despite the wide application of deep neural networks (DNN) models, their application over small-sized real-estate price prediction is limited due to the reduced prediction accuracy and the high-dimensionality of the dataset. This study motivates small-sized real-estate agencies to take DNN-driven decisions using the available local dataset. To improve the high-dimensionality of real-estate price datasets and thus enhance the price-prediction accuracy of a DNN model, this paper adopts principal component analysis (PCA). The PCA benefits in improving the prediction accuracy of a DNN model are threefold: dimensionality reduction, dataset transformation and localisation of influential price features. The results indicate that, through the PCA-DNN model, the transformed dataset achieves higher accuracy (90%–95%) and better generalisation ability compared with other benchmark price predictors. The spatial and building age proved to have the most impact in determining the overall real-estate price. The application of PCA not only reduces the high-dimensionality of the dataset but also enhances the quality of the encoded feature attributes. The model is beneficial in real-estate and construction applications, where the absence of medium and big datasets decreases the price-prediction accuracy.","PeriodicalId":42309,"journal":{"name":"Organization Technology and Management in Construction","volume":"14 1","pages":"2741 - 2759"},"PeriodicalIF":1.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organization Technology and Management in Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/otmcj-2022-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Despite the wide application of deep neural networks (DNN) models, their application over small-sized real-estate price prediction is limited due to the reduced prediction accuracy and the high-dimensionality of the dataset. This study motivates small-sized real-estate agencies to take DNN-driven decisions using the available local dataset. To improve the high-dimensionality of real-estate price datasets and thus enhance the price-prediction accuracy of a DNN model, this paper adopts principal component analysis (PCA). The PCA benefits in improving the prediction accuracy of a DNN model are threefold: dimensionality reduction, dataset transformation and localisation of influential price features. The results indicate that, through the PCA-DNN model, the transformed dataset achieves higher accuracy (90%–95%) and better generalisation ability compared with other benchmark price predictors. The spatial and building age proved to have the most impact in determining the overall real-estate price. The application of PCA not only reduces the high-dimensionality of the dataset but also enhances the quality of the encoded feature attributes. The model is beneficial in real-estate and construction applications, where the absence of medium and big datasets decreases the price-prediction accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络和主成分分析的房地产价格预测
摘要尽管深度神经网络(DNN)模型应用广泛,但由于预测精度低和数据集维数高,其在小型房地产价格预测中的应用受到限制。这项研究促使小型房地产中介机构利用可用的本地数据集做出DNN驱动的决策。为了提高房地产价格数据集的高维性,从而提高DNN模型的价格预测精度,本文采用了主成分分析(PCA)。PCA在提高DNN模型预测精度方面有三个好处:降维、数据集转换和有影响力的价格特征的本地化。结果表明,通过PCA-DNN模型,与其他基准价格预测因子相比,转换后的数据集实现了更高的准确性(90%-95%)和更好的泛化能力。事实证明,空间和建筑年代对决定整体房地产价格的影响最大。PCA的应用不仅降低了数据集的高维性,而且提高了编码特征属性的质量。该模型在房地产和建筑应用中是有益的,因为缺乏中大型数据集会降低价格预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
8
审稿时长
16 weeks
期刊最新文献
Project success and critical success factors of construction projects: project practitioners’ perspectives Exploring the social legitimacy of urban road PPPs in Nigeria Capability improvement measures of the public sector for implementation of building information modeling in construction projects Linking life cycle BIM data to a facility management system using Revit Dynamo Investigation of the poor-quality practices on building construction sites in Malaysia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1