{"title":"Real-estate price prediction with deep neural network and principal component analysis","authors":"F. Mostofi, V. Toğan, H. B. Başağa","doi":"10.2478/otmcj-2022-0016","DOIUrl":null,"url":null,"abstract":"Abstract Despite the wide application of deep neural networks (DNN) models, their application over small-sized real-estate price prediction is limited due to the reduced prediction accuracy and the high-dimensionality of the dataset. This study motivates small-sized real-estate agencies to take DNN-driven decisions using the available local dataset. To improve the high-dimensionality of real-estate price datasets and thus enhance the price-prediction accuracy of a DNN model, this paper adopts principal component analysis (PCA). The PCA benefits in improving the prediction accuracy of a DNN model are threefold: dimensionality reduction, dataset transformation and localisation of influential price features. The results indicate that, through the PCA-DNN model, the transformed dataset achieves higher accuracy (90%–95%) and better generalisation ability compared with other benchmark price predictors. The spatial and building age proved to have the most impact in determining the overall real-estate price. The application of PCA not only reduces the high-dimensionality of the dataset but also enhances the quality of the encoded feature attributes. The model is beneficial in real-estate and construction applications, where the absence of medium and big datasets decreases the price-prediction accuracy.","PeriodicalId":42309,"journal":{"name":"Organization Technology and Management in Construction","volume":"14 1","pages":"2741 - 2759"},"PeriodicalIF":1.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organization Technology and Management in Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/otmcj-2022-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Despite the wide application of deep neural networks (DNN) models, their application over small-sized real-estate price prediction is limited due to the reduced prediction accuracy and the high-dimensionality of the dataset. This study motivates small-sized real-estate agencies to take DNN-driven decisions using the available local dataset. To improve the high-dimensionality of real-estate price datasets and thus enhance the price-prediction accuracy of a DNN model, this paper adopts principal component analysis (PCA). The PCA benefits in improving the prediction accuracy of a DNN model are threefold: dimensionality reduction, dataset transformation and localisation of influential price features. The results indicate that, through the PCA-DNN model, the transformed dataset achieves higher accuracy (90%–95%) and better generalisation ability compared with other benchmark price predictors. The spatial and building age proved to have the most impact in determining the overall real-estate price. The application of PCA not only reduces the high-dimensionality of the dataset but also enhances the quality of the encoded feature attributes. The model is beneficial in real-estate and construction applications, where the absence of medium and big datasets decreases the price-prediction accuracy.