Deep partial least squares for instrumental variable regression

IF 1.3 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Applied Stochastic Models in Business and Industry Pub Date : 2023-06-19 DOI:10.1002/asmb.2787
Maria Nareklishvili, Nicholas Polson, Vadim Sokolov
{"title":"Deep partial least squares for instrumental variable regression","authors":"Maria Nareklishvili,&nbsp;Nicholas Polson,&nbsp;Vadim Sokolov","doi":"10.1002/asmb.2787","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose deep partial least squares for the estimation of high-dimensional nonlinear instrumental variable regression. As a precursor to a flexible deep neural network architecture, our methodology uses partial least squares for dimension reduction and feature selection from the set of instruments and covariates. A central theoretical result, due to Brillinger (2012) Selected Works of Daving Brillinger. 589-606, shows that the feature selection provided by partial least squares is consistent and the weights are estimated up to a proportionality constant. We illustrate our methodology with synthetic datasets with a sparse and correlated network structure and draw applications to the effect of childbearing on the mother's labor supply based on classic data of Chernozhukov et al. Ann Rev Econ. (2015b):649–688. The results on synthetic data as well as applications show that the deep partial least squares method significantly outperforms other related methods. Finally, we conclude with directions for future research.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":"39 6","pages":"734-754"},"PeriodicalIF":1.3000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asmb.2787","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2787","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose deep partial least squares for the estimation of high-dimensional nonlinear instrumental variable regression. As a precursor to a flexible deep neural network architecture, our methodology uses partial least squares for dimension reduction and feature selection from the set of instruments and covariates. A central theoretical result, due to Brillinger (2012) Selected Works of Daving Brillinger. 589-606, shows that the feature selection provided by partial least squares is consistent and the weights are estimated up to a proportionality constant. We illustrate our methodology with synthetic datasets with a sparse and correlated network structure and draw applications to the effect of childbearing on the mother's labor supply based on classic data of Chernozhukov et al. Ann Rev Econ. (2015b):649–688. The results on synthetic data as well as applications show that the deep partial least squares method significantly outperforms other related methods. Finally, we conclude with directions for future research.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工具变量回归的深度偏最小二乘
在本文中,我们提出了用于估计高维非线性工具变量回归的深度偏最小二乘。作为灵活的深度神经网络架构的先驱,我们的方法使用偏最小二乘法从一组仪器和协变量中进行降维和特征选择。Brillinger(2012)的一个核心理论结果表明,偏最小二乘法提供的特征选择是一致的,并且权重被估计到比例常数。我们用具有稀疏和相关网络结构的合成数据集来说明我们的方法,并基于Angrist和Evans(1996)的经典数据,绘制了生育对母亲劳动力供应影响的应用程序。合成数据和应用结果表明,深度偏最小二乘法显著优于其他相关方法。最后,我们总结了未来研究的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process. The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.
期刊最新文献
Is (Independent) Subordination Relevant in Equity Derivatives? Issue Information Foreword to the Special Issue on Mathematical Methods in Reliability (MMR23) Limiting Behavior of Mixed Coherent Systems With Lévy-Frailty Marshall–Olkin Failure Times Pricing Cyber Insurance: A Geospatial Statistical Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1