The Effectiveness of Pressure Safety Valves in Chemical Supply Systems to Prevent Fire, Explosion and Overpressure in the Korean Semiconductor Industry

IF 3 3区 农林科学 Q2 ECOLOGY Fire-Switzerland Pub Date : 2023-09-01 DOI:10.3390/fire6090344
Kyeong-Seok Oh, Euittum Jeong, Woo Sub Shim, Jong-Bae Baek
{"title":"The Effectiveness of Pressure Safety Valves in Chemical Supply Systems to Prevent Fire, Explosion and Overpressure in the Korean Semiconductor Industry","authors":"Kyeong-Seok Oh, Euittum Jeong, Woo Sub Shim, Jong-Bae Baek","doi":"10.3390/fire6090344","DOIUrl":null,"url":null,"abstract":"This study was conducted to review the safety and appropriateness of PSV (Pressure Safety Valve) installation in the supply tank, which is a pressure vessel included in supply systems dedicated to supplying the acid/alkaline substances used in the Korean semiconductor manufacturing process. Three aspects of design, risk assessment, and regulations were reviewed to determine if there is a source of pressure higher than the maximum allowable working pressure (MAWP) of the supply tank that could cause fires, explosions, and overpressure. In the case of the design review, all 17 overpressure scenarios described in API Standard 521, i.e., pressure-relieving and depressuring systems, were reviewed, and there was no overpressure scenario above the maximum allowable working pressure (MAWP). Then, the risk assessment, i.e., the Hazard and Operability Study (HAZOP) technique, was used, and as a result of reviewing all possible risk situations, we can state that there were no overpressure scenarios that can exceed the design pressure of the supply tank; thus, we decided that the installation of a PSV on top of the supply tank is unnecessary. Finally, accident prevention measures against overpressure, such as the KS B 6750-3 system design and the Korean Industrial Standard, were reviewed from a legal point of view. It was confirmed that the hazardous chemical supply system for the semiconductor industry designed in this study has several protective functions to prevent fires, explosions, and overpressure. As a result of reviewing the above three aspects, it can be said that there is no need to install a pressure safety valve in a pressure vessel storing hazardous chemicals.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire-Switzerland","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fire6090344","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

This study was conducted to review the safety and appropriateness of PSV (Pressure Safety Valve) installation in the supply tank, which is a pressure vessel included in supply systems dedicated to supplying the acid/alkaline substances used in the Korean semiconductor manufacturing process. Three aspects of design, risk assessment, and regulations were reviewed to determine if there is a source of pressure higher than the maximum allowable working pressure (MAWP) of the supply tank that could cause fires, explosions, and overpressure. In the case of the design review, all 17 overpressure scenarios described in API Standard 521, i.e., pressure-relieving and depressuring systems, were reviewed, and there was no overpressure scenario above the maximum allowable working pressure (MAWP). Then, the risk assessment, i.e., the Hazard and Operability Study (HAZOP) technique, was used, and as a result of reviewing all possible risk situations, we can state that there were no overpressure scenarios that can exceed the design pressure of the supply tank; thus, we decided that the installation of a PSV on top of the supply tank is unnecessary. Finally, accident prevention measures against overpressure, such as the KS B 6750-3 system design and the Korean Industrial Standard, were reviewed from a legal point of view. It was confirmed that the hazardous chemical supply system for the semiconductor industry designed in this study has several protective functions to prevent fires, explosions, and overpressure. As a result of reviewing the above three aspects, it can be said that there is no need to install a pressure safety valve in a pressure vessel storing hazardous chemicals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
韩国半导体行业化学品供应系统中压力安全阀预防火灾、爆炸和超压的有效性
本研究旨在审查供应罐中PSV(压力安全阀)安装的安全性和适当性,供应罐是一种压力容器,包含在专门供应韩国半导体制造过程中使用的酸性/碱性物质的供应系统中。审查了设计、风险评估和法规的三个方面,以确定是否存在高于供应罐最大允许工作压力(MAWP)的压力源,从而可能导致火灾、爆炸和超压。在设计审查的情况下,审查了API标准521中描述的所有17种超压情况,即减压和减压系统,没有超过最大允许工作压力(MAWP)的超压情况。然后,使用了风险评估,即危险与可操作性研究(HAZOP)技术,作为审查所有可能风险情况的结果,我们可以声明不存在可能超过供应罐设计压力的超压情况;因此,我们决定在供应罐顶部安装PSV是不必要的。最后,从法律角度对KS B 6750-3系统设计和韩国工业标准等超压事故预防措施进行了评述。经证实,本研究中设计的半导体行业危险化学品供应系统具有多种保护功能,可防止火灾、爆炸和超压。回顾以上三个方面,可以说没有必要在储存危险化学品的压力容器中安装压力安全阀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fire-Switzerland
Fire-Switzerland Multiple-
CiteScore
3.10
自引率
15.60%
发文量
182
审稿时长
11 weeks
期刊最新文献
Fire Risk of Polyethylene (PE)-Based Foam Blocks Used as Interior Building Materials and Fire Suppression through a Simple Surface Coating: Analysis of Vulnerability, Propagation, and Flame Retardancy Experimental Study on Combustion Behavior of U-Shaped Cables with Different Bending Forms and Angles Evaluation of Air Quality inside Self-Contained Breathing Apparatus Used by Firefighters Summer Compound Drought-Heat Extremes Amplify Fire-Weather Risk and Burned Area beyond Historical Thresholds in Chongqing Region, Subtropical China Identification Methodology for Chemical Warehouses Dealing with Flammable Substances Capable of Causing Firewater Pollution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1