Adaptive Filtering Remote Sensing Image Segmentation Network based on Attention Mechanism

Cong zhong Wu, Hao Dong, Xuan jie Lin, Han tong Jiang, L. Wang, Xin zhi Liu, Wei kai Shi
{"title":"Adaptive Filtering Remote Sensing Image Segmentation Network based on Attention Mechanism","authors":"Cong zhong Wu, Hao Dong, Xuan jie Lin, Han tong Jiang, L. Wang, Xin zhi Liu, Wei kai Shi","doi":"10.5121/csit.2021.110903","DOIUrl":null,"url":null,"abstract":"It is difficult to segment small objects and the edge of the object because of larger-scale variation, larger intra-class variance of background and foreground-background imbalance in the remote sensing imagery. In convolutional neural networks, high frequency signals may degenerate into completely different ones after downsampling. We define this phenomenon as aliasing. Meanwhile, although dilated convolution can expand the receptive field of feature map, a much more complex background can cause serious alarms. To alleviate the above problems, we propose an attention-based mechanism adaptive filtered segmentation network. Experimental results on the Deepglobe Road Extraction dataset and Inria Aerial Image Labeling dataset showed that our method can effectively improve the segmentation accuracy. The F1 value on the two data sets reached 82.67% and 85.71% respectively.","PeriodicalId":72673,"journal":{"name":"Computer science & information technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer science & information technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2021.110903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is difficult to segment small objects and the edge of the object because of larger-scale variation, larger intra-class variance of background and foreground-background imbalance in the remote sensing imagery. In convolutional neural networks, high frequency signals may degenerate into completely different ones after downsampling. We define this phenomenon as aliasing. Meanwhile, although dilated convolution can expand the receptive field of feature map, a much more complex background can cause serious alarms. To alleviate the above problems, we propose an attention-based mechanism adaptive filtered segmentation network. Experimental results on the Deepglobe Road Extraction dataset and Inria Aerial Image Labeling dataset showed that our method can effectively improve the segmentation accuracy. The F1 value on the two data sets reached 82.67% and 85.71% respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于注意力机制的自适应滤波遥感图像分割网络
由于遥感图像的尺度变化较大,类内背景变化较大,前景与背景不平衡,给小目标和目标边缘的分割带来困难。在卷积神经网络中,高频信号经过降采样后可能退化成完全不同的信号。我们将这种现象定义为混叠。同时,尽管扩张卷积可以扩大特征图的接受域,但更复杂的背景可能会引起严重的警报。为了解决上述问题,我们提出了一种基于注意的自适应滤波分割网络机制。在Deepglobe道路提取数据集和Inria航拍图像标记数据集上的实验结果表明,该方法可以有效地提高分割精度。两个数据集上的F1值分别达到82.67%和85.71%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tensor-Based Multi-Modality Feature Selection and Regression for Alzheimer's Disease Diagnosis. Tensor-Based Multi-Modality Feature Selection and Regression for Alzheimer's Disease Diagnosis Lattice Based Group Key Exchange Protocol in the Standard Model The 5 Dimensions of Problem Solving using DINNA Diagram: Double Ishikawa and Naze Naze Analysis Appraisal Study of Similarity-Based and Embedding-Based Link Prediction Methods on Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1