The influence of model organosulfur extreme pressure additives and analogues on the corrosion of copper as measured by a wire corrosion test method

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL Lubrication Science Pub Date : 2023-01-04 DOI:10.1002/ls.1625
Gregory J. Hunt, Michael P. Gahagan, Mitchell A. Peplow
{"title":"The influence of model organosulfur extreme pressure additives and analogues on the corrosion of copper as measured by a wire corrosion test method","authors":"Gregory J. Hunt,&nbsp;Michael P. Gahagan,&nbsp;Mitchell A. Peplow","doi":"10.1002/ls.1625","DOIUrl":null,"url":null,"abstract":"<p>A wire corrosion test (WCT) is used to investigate the influence of model organosulfur extreme pressure additives and analogues. The corrosion response from these compounds is discussed with regards to chemical structural type. Corrosion rates were calculated using the guide in ASTM G31 to provide a measurement in mm/year.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ls.1625","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1625","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

Abstract

A wire corrosion test (WCT) is used to investigate the influence of model organosulfur extreme pressure additives and analogues. The corrosion response from these compounds is discussed with regards to chemical structural type. Corrosion rates were calculated using the guide in ASTM G31 to provide a measurement in mm/year.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用导线腐蚀试验法测定了模型有机硫极压添加剂及其类似物对铜腐蚀的影响
采用金属丝腐蚀试验(WCT)研究了模型有机硫极压添加剂和类似物对金属丝腐蚀的影响。从化学结构类型的角度讨论了这些化合物的腐蚀反应。腐蚀速率是根据ASTM G31中的指南计算的,以毫米/年为单位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lubrication Science
Lubrication Science ENGINEERING, CHEMICAL-ENGINEERING, MECHANICAL
CiteScore
3.60
自引率
10.50%
发文量
61
审稿时长
6.8 months
期刊介绍: Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development. Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on: Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives. State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces. Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles. Gas lubrication. Extreme-conditions lubrication. Green-lubrication technology and lubricants. Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions. Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural. Modelling hydrodynamic and thin film lubrication. All lubrication related aspects of nanotribology. Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption. Bio-lubrication, bio-lubricants and lubricated biological systems. Other novel and cutting-edge aspects of lubrication in all lubrication regimes.
期刊最新文献
Issue Information Issue Information Properties of Bi2S3 Coatings Deposited on the Bionic Leaf Vein Textured Surfaces With Different Surface Densities Investigation on Air Drag Reduction and Stabilisation of Bionic Multiscale Wetting Gradient Surfaces Improving the Performance of Machining Parameters in the Turning Process of Inconel 686 by Using Cryo‐MQL Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1