Microstructural evolution during sintering of Fe-Cr-C steels prepared from admixed elemental powders

IF 1.9 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Powder Metallurgy Pub Date : 2023-04-19 DOI:10.1080/00325899.2023.2201487
R. de Oro Calderon, C. Gierl-Mayer, H. Danninger
{"title":"Microstructural evolution during sintering of Fe-Cr-C steels prepared from admixed elemental powders","authors":"R. de Oro Calderon, C. Gierl-Mayer, H. Danninger","doi":"10.1080/00325899.2023.2201487","DOIUrl":null,"url":null,"abstract":"ABSTRACT In the upcoming years, a reduction in the use of critical elements, such as Ni and Cu, with unstable prices and high demand from the electromobility sector will become increasingly important for the PM-industry. Cr-alloyed sintered steels offer attractive properties at a moderate cost, but so far mostly Cr-prealloyed grades have been used. This work analyses the microstructural homogenisation process when Cr is introduced as admixed elemental powder. It is shown how – due to its high carbon affinity – Cr particles act as ‘internal carbon-getters’. There is an intermediate ‘heterogenization’ of the microstructure, i.e. the iron matrix is decarburised due to the formation of (Cr, Fe)-carbides. Final homogenisation depends on the formation of a transient liquid phase through the eutectic reaction between carbides and the iron matrix. Thus, the microstructure is not only sensitive to aspects such as sintering temperature or Cr-particle size but also to the heating rate and small variations in nominal carbon.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00325899.2023.2201487","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT In the upcoming years, a reduction in the use of critical elements, such as Ni and Cu, with unstable prices and high demand from the electromobility sector will become increasingly important for the PM-industry. Cr-alloyed sintered steels offer attractive properties at a moderate cost, but so far mostly Cr-prealloyed grades have been used. This work analyses the microstructural homogenisation process when Cr is introduced as admixed elemental powder. It is shown how – due to its high carbon affinity – Cr particles act as ‘internal carbon-getters’. There is an intermediate ‘heterogenization’ of the microstructure, i.e. the iron matrix is decarburised due to the formation of (Cr, Fe)-carbides. Final homogenisation depends on the formation of a transient liquid phase through the eutectic reaction between carbides and the iron matrix. Thus, the microstructure is not only sensitive to aspects such as sintering temperature or Cr-particle size but also to the heating rate and small variations in nominal carbon.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合元素粉末制备Fe-Cr-C钢烧结过程中的组织演变
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Powder Metallurgy
Powder Metallurgy 工程技术-冶金工程
CiteScore
2.90
自引率
7.10%
发文量
30
审稿时长
3 months
期刊介绍: Powder Metallurgy is an international journal publishing peer-reviewed original research on the science and practice of powder metallurgy and particulate technology. Coverage includes metallic particulate materials, PM tool materials, hard materials, composites, and novel powder based materials.
期刊最新文献
Can children with negative polysomnography results always be non-OSA controls? Advancement of thermoelectric performances through the dispersion of expanded graphene on p-type BiSbTe alloys Synthesis of Li1.3Al0.3Ti1.7(PO4)3-coated LiCoO2 cathode powder for all-solid-state lithium batteries Development of TiCN-Co-Cr3C2-Si3N4-based cermets with improved hardness and toughness for cutting tool applications Grain refinement and coercivity enhancement of sintered Nd–Fe–B alloys by doping eutectic alloy (Nd0.75Pr0.25)70Cu30.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1