Carbonation of alkali-activated and hybrid mortars manufactured from slag: Confocal Raman microscopy study and impact on wear performance

IF 2.7 4区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Boletin de la Sociedad Espanola de Ceramica y Vidrio Pub Date : 2023-09-01 DOI:10.1016/j.bsecv.2022.07.003
Segundo Shagñay, Asunción Bautista, Francisco Velasco, Manuel Torres-Carrasco
{"title":"Carbonation of alkali-activated and hybrid mortars manufactured from slag: Confocal Raman microscopy study and impact on wear performance","authors":"Segundo Shagñay,&nbsp;Asunción Bautista,&nbsp;Francisco Velasco,&nbsp;Manuel Torres-Carrasco","doi":"10.1016/j.bsecv.2022.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>This work aims to contribute to reducing environmental damage caused by the manufacturing of Portland cements (PC), through in-depth exploration into the durability of two mortars manufactured from blast furnace slag: an alkaline-activated one (AAS) and a hybrid cement (HS) with less than 20% clinker. The carbonation resistance of these eco-friendly mortars is compared to that of a mortar based on Portland IV cement. From a mineralogical point of view, DTA-TG and confocal Raman microscopy (CRM) tests have been carried out, along with measurement of pH changes, compression strength and total porosity. Böhme tests have been performed to evaluate changes due to carbonation in the wear behavior of the mortars under study. Using the CRM technique, it has been possible to establish a relationship between the carbonation of the systems with the unbound carbon content, as well as identify the different polymorphic phases of CaCO<sub>3</sub> formed. The results obtained reveal that alternative AAS and HS mortars are more difficult to carbonate than Portland cement mortars, and that the effect of this process on the porosity depends on the nature of the hydroxides previously present in the pore solution. The carbonation of the surfaces also improves the abrasive wear resistance of the mortars under study.</p></div>","PeriodicalId":56330,"journal":{"name":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","volume":"62 5","pages":"Pages 428-442"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0366317522000450","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 2

Abstract

This work aims to contribute to reducing environmental damage caused by the manufacturing of Portland cements (PC), through in-depth exploration into the durability of two mortars manufactured from blast furnace slag: an alkaline-activated one (AAS) and a hybrid cement (HS) with less than 20% clinker. The carbonation resistance of these eco-friendly mortars is compared to that of a mortar based on Portland IV cement. From a mineralogical point of view, DTA-TG and confocal Raman microscopy (CRM) tests have been carried out, along with measurement of pH changes, compression strength and total porosity. Böhme tests have been performed to evaluate changes due to carbonation in the wear behavior of the mortars under study. Using the CRM technique, it has been possible to establish a relationship between the carbonation of the systems with the unbound carbon content, as well as identify the different polymorphic phases of CaCO3 formed. The results obtained reveal that alternative AAS and HS mortars are more difficult to carbonate than Portland cement mortars, and that the effect of this process on the porosity depends on the nature of the hydroxides previously present in the pore solution. The carbonation of the surfaces also improves the abrasive wear resistance of the mortars under study.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
渣制碱活化砂浆和杂化砂浆的碳化:共聚焦拉曼显微镜研究及其对磨损性能的影响
本研究旨在通过深入研究两种由高炉矿渣制成的砂浆(碱活化水泥(AAS)和含低于20%熟料的混合水泥(HS))的耐久性,为减少波特兰水泥(PC)的制造对环境造成的破坏做出贡献。这些环保砂浆的抗碳化性能与波特兰IV水泥砂浆进行了比较。从矿物学的角度来看,进行了DTA-TG和共聚焦拉曼显微镜(CRM)测试,以及pH变化、抗压强度和总孔隙度的测量。Böhme已经进行了试验,以评估所研究的砂浆的磨损行为因碳化而发生的变化。利用CRM技术,可以建立体系碳化与未结合碳含量之间的关系,并确定形成的CaCO3的不同多晶相。结果表明,替代AAS和HS砂浆比硅酸盐水泥砂浆更难碳酸盐化,并且该过程对孔隙率的影响取决于孔隙溶液中先前存在的氢氧化物的性质。表面碳化也提高了所研究砂浆的磨料耐磨性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Boletin de la Sociedad Espanola de Ceramica y Vidrio
Boletin de la Sociedad Espanola de Ceramica y Vidrio 工程技术-材料科学:硅酸盐
CiteScore
5.50
自引率
2.90%
发文量
72
审稿时长
103 days
期刊介绍: The Journal of the Spanish Ceramic and Glass Society publishes scientific articles and communications describing original research and reviews relating to ceramic materials and glasses. The main interests are on novel generic science and technology establishing the relationships between synthesis, processing microstructure and properties of materials. Papers may deal with ceramics and glasses included in any of the conventional categories: structural, functional, traditional, composites and cultural heritage. The main objective of the Journal of the Spanish Ceramic and Glass Society is to sustain a high standard research quality by means of appropriate reviewing procedures.
期刊最新文献
α/β-TCP silicate glass-ceramic obtained by sol–gel: Structure and in vitro bioactivity On the use of Afyon clay in Ukrainian clay-free compositions for porcelain tile manufacture Inteligencia artificial y materiales Spectroscopic insight into the structural and microstructural properties of La2Ce2O7 ceramics Characterization of the dynamic properties of an automotive laminated glass ceiling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1