A Time-Domain Finite-Difference Method for Bending Waves on Infinite Beams on an Elastic Foundation

IF 1.3 Q3 ACOUSTICS Acoustics (Basel, Switzerland) Pub Date : 2022-10-05 DOI:10.3390/acoustics4040052
K. Stampka, E. Sarradj
{"title":"A Time-Domain Finite-Difference Method for Bending Waves on Infinite Beams on an Elastic Foundation","authors":"K. Stampka, E. Sarradj","doi":"10.3390/acoustics4040052","DOIUrl":null,"url":null,"abstract":"To model the vibration and structure-borne sound excitation and propagation of a railway rail, it can be modeled as an infinite beam on an elastic foundation. Existing analytical or numerical models are either formulated in the frequency domain or consider only finite beams in the time domain. Therefore, a time-domain approach for bending wave propagation on an effectively infinite beam on an elastic foundation is proposed. The approach makes use of an implicit finite-difference method that allows for varying properties of the beam and the foundation along the length of the beam. Strategies for an efficient discretization are discussed. The method is validated against existing analytical models for a single layer and two layers, as well as continuous and discrete support. The results show very good agreement, and it can be concluded that the proposed method can be seen as a versatile method for simulating the behavior of a beam on different kinds of elastic foundations.","PeriodicalId":72045,"journal":{"name":"Acoustics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/acoustics4040052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

To model the vibration and structure-borne sound excitation and propagation of a railway rail, it can be modeled as an infinite beam on an elastic foundation. Existing analytical or numerical models are either formulated in the frequency domain or consider only finite beams in the time domain. Therefore, a time-domain approach for bending wave propagation on an effectively infinite beam on an elastic foundation is proposed. The approach makes use of an implicit finite-difference method that allows for varying properties of the beam and the foundation along the length of the beam. Strategies for an efficient discretization are discussed. The method is validated against existing analytical models for a single layer and two layers, as well as continuous and discrete support. The results show very good agreement, and it can be concluded that the proposed method can be seen as a versatile method for simulating the behavior of a beam on different kinds of elastic foundations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弹性地基上无限梁弯曲波的时域有限差分法
为了模拟铁路轨道的振动和结构声的激发和传播,可以将其建模为弹性基础上的无限梁。现有的解析模型或数值模型要么在频域内制定,要么只考虑时域内的有限梁。因此,提出了弹性地基上有效无限梁上弯曲波传播的时域方法。该方法利用隐式有限差分法,允许沿梁的长度变化的梁和基础的性质。讨论了有效离散化的策略。针对现有的单层、双层、连续支持和离散支持分析模型,对该方法进行了验证。结果表明,本文提出的方法可以作为一种通用的方法来模拟不同类型弹性地基上的梁的受力特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Data-Driven Discovery of Anomaly-Sensitive Parameters from Uvula Wake Flows Using Wavelet Analyses and Poincaré Maps Importance of Noise Hygiene in Dairy Cattle Farming—A Review Finite Element–Boundary Element Acoustic Backscattering with Model Reduction of Surface Pressure Based on Coherent Clusters Applying New Algorithms for Numerical Integration on the Sphere in the Far Field of Sound Pressure Sound Environment during Dental Treatment in Relation to COVID-19 Pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1