Airborne LiDAR data in landscape archaeology. An introduction for non-archaeologists

IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS IT-Information Technology Pub Date : 2022-07-28 DOI:10.1515/itit-2022-0001
Benjamin Štular, Edisa Lozić
{"title":"Airborne LiDAR data in landscape archaeology. An introduction for non-archaeologists","authors":"Benjamin Štular, Edisa Lozić","doi":"10.1515/itit-2022-0001","DOIUrl":null,"url":null,"abstract":"Abstract The use of airborne LiDAR data has become an essential component of landscape archaeology. This review article provides an understandable introduction to airborne LiDAR data processing specific to archaeology with a holistic view from a technical perspective. It is aimed primarily at researchers, students, and experts whose primary field of study is not archaeology. The article first outlines what the archaeological interest in airborne LiDAR data is and how the data processing workflow is archaeology-specific. The article emphasises that the processing workflow is riddled with archaeology-specific details and presents the key processing steps. These are, in order of their impact on the final result, enhanced visualisation, manual reclassification, filtering of ground points, and interpolation. If a single most important characteristic of airborne LiDAR data processing for archaeology is to be emphasised, it is that archaeologists need an archaeology-specific DEM for their work.","PeriodicalId":43953,"journal":{"name":"IT-Information Technology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IT-Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/itit-2022-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The use of airborne LiDAR data has become an essential component of landscape archaeology. This review article provides an understandable introduction to airborne LiDAR data processing specific to archaeology with a holistic view from a technical perspective. It is aimed primarily at researchers, students, and experts whose primary field of study is not archaeology. The article first outlines what the archaeological interest in airborne LiDAR data is and how the data processing workflow is archaeology-specific. The article emphasises that the processing workflow is riddled with archaeology-specific details and presents the key processing steps. These are, in order of their impact on the final result, enhanced visualisation, manual reclassification, filtering of ground points, and interpolation. If a single most important characteristic of airborne LiDAR data processing for archaeology is to be emphasised, it is that archaeologists need an archaeology-specific DEM for their work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
景观考古中的机载激光雷达数据。非考古学家简介
利用机载激光雷达数据已成为景观考古的重要组成部分。这篇综述文章从技术角度全面介绍了考古机载激光雷达数据处理。它主要针对的是那些主要研究领域不是考古学的研究人员、学生和专家。文章首先概述了考古学对机载激光雷达数据的兴趣是什么,以及数据处理工作流是如何针对考古学的。文章强调,处理工作流程充满了考古学特有的细节,并介绍了关键的处理步骤。按照对最终结果的影响顺序,这些措施是增强可视化、手动重新分类、地面点过滤和插值。如果要强调机载激光雷达考古数据处理的一个最重要的特征,那就是考古学家需要一个考古特定的DEM来完成他们的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IT-Information Technology
IT-Information Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.80
自引率
0.00%
发文量
29
期刊最新文献
Wildfire prediction for California using and comparing Spatio-Temporal Knowledge Graphs Machine learning in AI Factories – five theses for developing, managing and maintaining data-driven artificial intelligence at large scale Machine learning applications Machine learning in sensor identification for industrial systems Machine learning and cyber security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1