Finding the forest in the trees: Enabling performance optimization on heterogeneous architectures through data science analysis of ensemble performance data

IF 2.5 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE International Journal of High Performance Computing Applications Pub Date : 2023-05-23 DOI:10.1177/10943420231175687
Olga Pearce, S. Brink
{"title":"Finding the forest in the trees: Enabling performance optimization on heterogeneous architectures through data science analysis of ensemble performance data","authors":"Olga Pearce, S. Brink","doi":"10.1177/10943420231175687","DOIUrl":null,"url":null,"abstract":"In this work, we develop novel data science methodologies for ensemble performance data that have the potential to uncover orders of magnitude of performance that is unknowingly being left on the table. Building on years of successful performance tool design and tool integration into million-line codes at Lawrence Livermore National Laboratory (Caliper (Boehme et al. 2016), Hatchet (Bhatele et al. 2019; Brink et al. 2020))—successes highlighted as key deliverables in meeting LLNL’s L1 and L2 milestones (Rieben and Weiss 2020)—we design a data science methodology for integrating multi-dimensional, multi-scale, multi-architecture, and multi-tool performance data, and provide data analytics and interactive visualization capabilities for further analysis and exploration of the data. Our work provides developers with a comprehensive multi-dimensional performance landscape, enabling enhanced capabilities for pinpointing performance bottlenecks on emerging hardware platforms composed of heterogeneous elements.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"37 1","pages":"434 - 441"},"PeriodicalIF":2.5000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420231175687","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we develop novel data science methodologies for ensemble performance data that have the potential to uncover orders of magnitude of performance that is unknowingly being left on the table. Building on years of successful performance tool design and tool integration into million-line codes at Lawrence Livermore National Laboratory (Caliper (Boehme et al. 2016), Hatchet (Bhatele et al. 2019; Brink et al. 2020))—successes highlighted as key deliverables in meeting LLNL’s L1 and L2 milestones (Rieben and Weiss 2020)—we design a data science methodology for integrating multi-dimensional, multi-scale, multi-architecture, and multi-tool performance data, and provide data analytics and interactive visualization capabilities for further analysis and exploration of the data. Our work provides developers with a comprehensive multi-dimensional performance landscape, enabling enhanced capabilities for pinpointing performance bottlenecks on emerging hardware platforms composed of heterogeneous elements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在树中寻找森林:通过集成性能数据的数据科学分析实现异构体系结构的性能优化
在这项工作中,我们为集成性能数据开发了新的数据科学方法,这些方法有可能揭示在不知不觉中遗留在桌面上的性能数量级。在Lawrence Livermore国家实验室多年成功的高性能工具设计和工具集成到百万行代码的基础上(Caliper(Boehme等人,2016),Hatchet(Bhatele等人,2019;Brink等人,2020)——在实现LLNL的L1和L2里程碑方面的成功被强调为关键交付成果(Rieben和Weiss 2020)——我们设计了一种数据科学方法,用于集成多维、多尺度、多架构和多工具性能数据,并提供数据分析和交互式可视化功能,用于进一步分析和探索数据。我们的工作为开发人员提供了一个全面的多维性能环境,增强了在由异构元素组成的新兴硬件平台上定位性能瓶颈的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of High Performance Computing Applications
International Journal of High Performance Computing Applications 工程技术-计算机:跨学科应用
CiteScore
6.10
自引率
6.50%
发文量
32
审稿时长
>12 weeks
期刊介绍: With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.
期刊最新文献
Result-Scalability: Following the Evolution of Selected Social Impact of HPC. TwoFold: Highly accurate structure and affinity prediction for protein-ligand complexes from sequences GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics General framework for re-assuring numerical reliability in parallel Krylov solvers: A case of bi-conjugate gradient stabilized methods Role-shifting threads: Increasing OpenMP malleability to address load imbalance at MPI and OpenMP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1