To the problem of forming the equation system for pressure swing adsorption mathematical model

IF 1 Q4 ENGINEERING, CHEMICAL Chemical Product and Process Modeling Pub Date : 2021-07-26 DOI:10.1515/cppm-2021-0008
O. Golubyatnikov, E. Akulinin, S. Dvoretsky, D. Dvoretsky
{"title":"To the problem of forming the equation system for pressure swing adsorption mathematical model","authors":"O. Golubyatnikov, E. Akulinin, S. Dvoretsky, D. Dvoretsky","doi":"10.1515/cppm-2021-0008","DOIUrl":null,"url":null,"abstract":"Abstract The complexity of the pressure swing adsorption (PSA) mathematical model, the need for its multiple calculations to reach the cyclic steady state and a large number of functional dependencies lead to unstable numerical circuits, physically unrealistic oscillations in adsorption profiles, an increase in the calculation time, and the failure of the solver. The paper proposes an approach to optimizing the calculation process, which consists in finding a reasonable balance between the completeness of the PSA mathematical model and the accuracy of the results obtained. The effectiveness of the approach is demonstrated on the example of air oxygen enrichment and hydrogen recovery from synthesis gas. The gas separation processes were simulated for the two-adsorber PSA unit with a granulated 13X adsorbent. The effect of the changes in the model coefficients on its accuracy in the operating range of input variables is investigated. A distinctive feature of this study is the recommendations for choosing a set of the model equations to calculate the PSA processes which are particularly relevant when solving optimization problems with uncertainty. The productivity, cycle duration, the diameter of the adsorbent particles and the flow rate, at which it is advisable to use the isothermal and external diffusion reduced PSA model in the calculations, are established, which will save at least 24.3 and 47.1% of the CPU time with a small loss in accuracy. The proposed approach can be used to form a set of equations for the PSA, rPSA, ultra rPSA, VSA, VPSA models, separation of various gas mixtures on various adsorbents.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"17 1","pages":"681 - 699"},"PeriodicalIF":1.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2021-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract The complexity of the pressure swing adsorption (PSA) mathematical model, the need for its multiple calculations to reach the cyclic steady state and a large number of functional dependencies lead to unstable numerical circuits, physically unrealistic oscillations in adsorption profiles, an increase in the calculation time, and the failure of the solver. The paper proposes an approach to optimizing the calculation process, which consists in finding a reasonable balance between the completeness of the PSA mathematical model and the accuracy of the results obtained. The effectiveness of the approach is demonstrated on the example of air oxygen enrichment and hydrogen recovery from synthesis gas. The gas separation processes were simulated for the two-adsorber PSA unit with a granulated 13X adsorbent. The effect of the changes in the model coefficients on its accuracy in the operating range of input variables is investigated. A distinctive feature of this study is the recommendations for choosing a set of the model equations to calculate the PSA processes which are particularly relevant when solving optimization problems with uncertainty. The productivity, cycle duration, the diameter of the adsorbent particles and the flow rate, at which it is advisable to use the isothermal and external diffusion reduced PSA model in the calculations, are established, which will save at least 24.3 and 47.1% of the CPU time with a small loss in accuracy. The proposed approach can be used to form a set of equations for the PSA, rPSA, ultra rPSA, VSA, VPSA models, separation of various gas mixtures on various adsorbents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于变压吸附数学模型方程组的建立问题
摘要变压吸附(PSA)数学模型的复杂性、需要多次计算才能达到循环稳态以及大量的函数依赖性导致了不稳定的数值回路、吸附剖面的物理不现实振荡、计算时间的增加以及求解器的故障。本文提出了一种优化计算过程的方法,即在PSA数学模型的完整性和所得结果的准确性之间找到合理的平衡。以合成气中的空气富氧和氢气回收为例,验证了该方法的有效性。模拟了具有颗粒状13X吸附剂的两个吸附器PSA单元的气体分离过程。研究了在输入变量的操作范围内,模型系数的变化对其精度的影响。本研究的一个显著特点是建议选择一组模型方程来计算PSA过程,这在解决具有不确定性的优化问题时特别相关。建立了生产率、循环持续时间、吸附剂颗粒的直径和流速,建议在计算中使用等温和外部扩散减少的PSA模型,这将节省至少24.3%和47.1%的CPU时间,同时精度损失较小。所提出的方法可用于形成PSA、rPSA、ultra-rPSA、VSA、VPSA模型的一组方程,以及在各种吸附剂上分离各种气体混合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Product and Process Modeling
Chemical Product and Process Modeling ENGINEERING, CHEMICAL-
CiteScore
2.10
自引率
11.10%
发文量
27
期刊介绍: Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.
期刊最新文献
Heat transfer efficiency in gas-solid fluidized beds with flat and corrugated walls. Enhancing heat transfer in tube heat exchanger containing water/Cu nanofluid by using turbulator Enhancing heat exchanger efficiency with novel perforated cone-shaped turbulators and nanofluids: a computational study Mathematical modeling and evaluation of permeation and membrane separation performance for Fischer–Tropsch products in a hydrophilic membrane reactor Energy, exergy, economic, and environmental analysis of natural gas sweetening process using lean vapor compression: a comparison study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1