RESEARCH ON APPLE LEAF DISEASE SEGMENTATION AND CLASSIFICATION BASED ON SEMANTIC SEGMENTATION NETWORK

IF 0.6 Q4 AGRICULTURAL ENGINEERING INMATEH-Agricultural Engineering Pub Date : 2023-04-30 DOI:10.35633/inmateh-69-27
Bin Wang, Lili Li, Shilin Li, Hua Yang
{"title":"RESEARCH ON APPLE LEAF DISEASE SEGMENTATION AND CLASSIFICATION BASED ON SEMANTIC SEGMENTATION NETWORK","authors":"Bin Wang, Lili Li, Shilin Li, Hua Yang","doi":"10.35633/inmateh-69-27","DOIUrl":null,"url":null,"abstract":"The key to diagnosing the types and degree of apple leaf diseases is to correctly segment apple leaf disease spots. Therefore, in order to effectively solve the problem of poor segmentation of leaves and diseased areas, the U2Net semantic segmentation network model was used in the research of apple leaf disease identification and disease diagnosis, and compared with the classic semantic segmentation network model DeepLabV3+ and UNet. In addition, the effects of different learning rates (0.01, 0.001, 0.0001) and optimizers (Adam, SGD) on the performance of U2Net network model were compared and analyzed. The experimental results showed that the learning rate is 0.001 and the optimizer is Adam, the average pixel accuracy (MPA) and mean intersection over union (MIoU) of the research model for lesion segmentation reach 98.87% and 84.43%, respectively. The results of this study were expected to provide the theoretical basis for the precise control of apple leaf disease.","PeriodicalId":44197,"journal":{"name":"INMATEH-Agricultural Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INMATEH-Agricultural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35633/inmateh-69-27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The key to diagnosing the types and degree of apple leaf diseases is to correctly segment apple leaf disease spots. Therefore, in order to effectively solve the problem of poor segmentation of leaves and diseased areas, the U2Net semantic segmentation network model was used in the research of apple leaf disease identification and disease diagnosis, and compared with the classic semantic segmentation network model DeepLabV3+ and UNet. In addition, the effects of different learning rates (0.01, 0.001, 0.0001) and optimizers (Adam, SGD) on the performance of U2Net network model were compared and analyzed. The experimental results showed that the learning rate is 0.001 and the optimizer is Adam, the average pixel accuracy (MPA) and mean intersection over union (MIoU) of the research model for lesion segmentation reach 98.87% and 84.43%, respectively. The results of this study were expected to provide the theoretical basis for the precise control of apple leaf disease.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语义分割网络的苹果叶病分割与分类研究
正确分割苹果叶病斑是诊断苹果叶病类型和程度的关键。因此,为了有效解决叶片和病区分割不佳的问题,将U2Net语义分割网络模型应用于苹果叶片病害识别和病害诊断的研究中,并与经典语义分割网络模型DeepLabV3+和UNet进行对比。此外,比较分析了不同学习率(0.01、0.001、0.0001)和优化器(Adam、SGD)对U2Net网络模型性能的影响。实验结果表明,学习率为0.001,优化器为Adam,研究模型的病灶分割平均像素精度(MPA)和平均交联精度(MIoU)分别达到98.87%和84.43%。本研究结果有望为苹果叶病的精确防治提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
INMATEH-Agricultural Engineering
INMATEH-Agricultural Engineering AGRICULTURAL ENGINEERING-
CiteScore
1.30
自引率
57.10%
发文量
98
期刊最新文献
TECHNICAL AND ENVIRONMENTAL EVALUATION OF USING RICE HUSKS AND SOLAR ENERGY ON THE ACTIVATION OF ABSORPTION CHILLERS IN THE CARIBBEAN REGION. CASE STUDY: BARRANQUILLA ALGORITHM FOR OPTIMIZING THE MOVEMENT OF A MOUNTED MACHINETRACTOR UNIT IN THE HEADLAND OF AN IRREGULARLY SHAPED FIELD STUDY ON THE INFLUENCE OF PCA PRE-TREATMENT ON PIG FACE IDENTIFICATION WITH KNN IoT-BASED EVAPOTRANSPIRATION ESTIMATION OF PEANUT PLANT USING DEEP NEURAL NETWORK DESIGN AND EXPERIMENT OF A SINGLE-ROW SMALL GRAIN PRECISION SEEDER
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1