Optimal design of a lightweight and thin radar absorbing nanocomposite

IF 1.4 Q4 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanostructures Pub Date : 2020-07-01 DOI:10.22052/JNS.2020.03.018
Behrouz Heidari, M. Fouladian, S. Fatemi
{"title":"Optimal design of a lightweight and thin radar absorbing nanocomposite","authors":"Behrouz Heidari, M. Fouladian, S. Fatemi","doi":"10.22052/JNS.2020.03.018","DOIUrl":null,"url":null,"abstract":"Recently, attention to polymeric nanocomposites has gained a great extent as they present new opportunities to provide superior properties in microwave absorbing materials. In this study polystyrene (PS) nanocomposites containing various nano-fillers were successfully synthesized and employed as microwave absorbing materials. The mentioned materials are usually designed to solve protection against electromagnetic interference in wireless communication systems and high frequency circuit mechanisms. In this study the performance of three various polystyrene (PS) nanocomposites containing: semi-conductor zinc oxide, non-metallic conductive graphene oxide and magnetic Fe3O4 were compared. The fillers type was selected as variable parameter and its influence on the electromagnetic wave absorption and reflection loss (RL) amount was investigated. The scanning electron microscopy (SEM) was used in morphological and particle size study of the nanocomposites. The electromagnetic wave absorption properties of nanocomposites were studied and compared using a vector network analyzer (frequency range of 5-8 GHz). The results indicate that at the same preparation conditions the polystyrene/graphene oxide nanocomposites have higher absorption compared with others.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"652-659"},"PeriodicalIF":1.4000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2020.03.018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, attention to polymeric nanocomposites has gained a great extent as they present new opportunities to provide superior properties in microwave absorbing materials. In this study polystyrene (PS) nanocomposites containing various nano-fillers were successfully synthesized and employed as microwave absorbing materials. The mentioned materials are usually designed to solve protection against electromagnetic interference in wireless communication systems and high frequency circuit mechanisms. In this study the performance of three various polystyrene (PS) nanocomposites containing: semi-conductor zinc oxide, non-metallic conductive graphene oxide and magnetic Fe3O4 were compared. The fillers type was selected as variable parameter and its influence on the electromagnetic wave absorption and reflection loss (RL) amount was investigated. The scanning electron microscopy (SEM) was used in morphological and particle size study of the nanocomposites. The electromagnetic wave absorption properties of nanocomposites were studied and compared using a vector network analyzer (frequency range of 5-8 GHz). The results indicate that at the same preparation conditions the polystyrene/graphene oxide nanocomposites have higher absorption compared with others.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轻量化薄型雷达吸波纳米复合材料的优化设计
近年来,聚合物纳米复合材料获得了极大的关注,因为它们为在微波吸收材料中提供优异性能提供了新的机会。本研究成功地合成了含有各种纳米填料的聚苯乙烯(PS)纳米复合材料,并将其用作微波吸收材料。所提到的材料通常被设计用于解决在无线通信系统和高频电路机构中对电磁干扰的保护。在本研究中,比较了三种不同的聚苯乙烯(PS)纳米复合材料的性能:半导体氧化锌、非金属导电氧化石墨烯和磁性Fe3O4。选择填料类型作为可变参数,研究了填料类型对电磁波吸收和反射损耗(RL)量的影响。利用扫描电子显微镜(SEM)对纳米复合材料的形貌和粒度进行了研究。使用矢量网络分析仪(频率范围为5-8GHz)研究并比较了纳米复合材料的电磁波吸收性能。结果表明,在相同的制备条件下,聚苯乙烯/氧化石墨烯纳米复合材料具有较高的吸收性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanostructures
Journal of Nanostructures NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊介绍: Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.
期刊最新文献
Assembling a Bunch of Transition Metals Oxides on Sodium Montmorillonite Layer for Anionic Polymerization of Butyl Methyl Acrylate Antimicrobial and Cytotoxic Activity of Platinum Nanoparticles Synthesized by Laser Ablation Technique Facile Synthesis of Fe/ZnO Hollow Spheres Nanostructures by Green Approach for the Photodegradation and Removal of Organic Dye Contaminants in Water Nanostructured Tin Sulfide Thin Films: Preparation via Chemical Bath Deposition and Characterization Sonochemical Preparation of Magnesium Hydroxide and Aluminum Hydroxide Nanoparticles for Flame Retardancy and Thermal Stability of Cellulose Acetate and Wood
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1