Numerical Simulation of the Elastic Behavior of the Automotive Brake Disc in Dry Sliding Contact With the Pads

S. Kerrouz, T. Tamine, M. Bouchetara
{"title":"Numerical Simulation of the Elastic Behavior of the Automotive Brake Disc in Dry Sliding Contact With the Pads","authors":"S. Kerrouz, T. Tamine, M. Bouchetara","doi":"10.37394/232011.2022.17.26","DOIUrl":null,"url":null,"abstract":"During braking and when the disk brought into contact with the brake pads which represent the friction body, mechanical stresses are imposed at the contact zone. All physical parameters (temperature, pressure speed and mechanical characteristics, and tribological conditions change over time), heat from friction generated at the interface, and temperature may exceed the critical value. All these problems that allowed us to do this study which concerns the numerical simulation by finite elements of a mechanical torque in dry sliding contact with motor vehicle disk/brake pads at the moment of stop braking using the ANSYS calculation code 14.5 which is based on the finite element method with its friction contact management algorithms. This behavior was analyzed in the transient case in terms of equivalent stresses and deformations (Von Mises) as a function of the braking conditions ( the type of loading, the speed of rotation of a disk, the pressure force applied to the brake pads, the coefficient of friction between the disk and the pads), and the thermal conditions (the temperature of the disk, and the heat flux in the disk, and the heat exchange by convection over the entire surface of the disk), the geometrical characteristics of the disk pads assembly and the position of the pads with respect to the brake disk and the mechanical parameters assembly and the position of the pads with respect to the brake disk and the mechanical parameters ( Young’s modulus, density, Poisson coefficient). This analysis allows us to see the behavior of the disk and the pads in contact and to recognize these damages in order to find the optimal technological solutions that will meet the needs of the engineer responsible for the design of the braking system, in particular the disk-pads torque, and to improve this system and make it more reliable and for an optimal and economical choice of the disk and pads well resist heat.","PeriodicalId":53603,"journal":{"name":"WSEAS Transactions on Applied and Theoretical Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Applied and Theoretical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232011.2022.17.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

During braking and when the disk brought into contact with the brake pads which represent the friction body, mechanical stresses are imposed at the contact zone. All physical parameters (temperature, pressure speed and mechanical characteristics, and tribological conditions change over time), heat from friction generated at the interface, and temperature may exceed the critical value. All these problems that allowed us to do this study which concerns the numerical simulation by finite elements of a mechanical torque in dry sliding contact with motor vehicle disk/brake pads at the moment of stop braking using the ANSYS calculation code 14.5 which is based on the finite element method with its friction contact management algorithms. This behavior was analyzed in the transient case in terms of equivalent stresses and deformations (Von Mises) as a function of the braking conditions ( the type of loading, the speed of rotation of a disk, the pressure force applied to the brake pads, the coefficient of friction between the disk and the pads), and the thermal conditions (the temperature of the disk, and the heat flux in the disk, and the heat exchange by convection over the entire surface of the disk), the geometrical characteristics of the disk pads assembly and the position of the pads with respect to the brake disk and the mechanical parameters assembly and the position of the pads with respect to the brake disk and the mechanical parameters ( Young’s modulus, density, Poisson coefficient). This analysis allows us to see the behavior of the disk and the pads in contact and to recognize these damages in order to find the optimal technological solutions that will meet the needs of the engineer responsible for the design of the braking system, in particular the disk-pads torque, and to improve this system and make it more reliable and for an optimal and economical choice of the disk and pads well resist heat.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
汽车制动盘和制动片干滑动接触弹性行为的数值模拟
在制动过程中以及当制动盘与代表摩擦体的制动片接触时,在接触区域施加机械应力。所有物理参数(温度、压力速度和机械特性,以及摩擦学条件随时间变化)、界面处产生的摩擦热量和温度都可能超过临界值。所有这些问题使我们能够进行这项研究,该研究涉及在停止制动时通过有限元对与机动车辆制动盘/制动片干滑动接触的机械扭矩进行数值模拟,使用基于有限元方法及其摩擦接触管理算法的ANSYS计算代码14.5。在瞬态情况下,根据等效应力和变形(Von Mises)作为制动条件(载荷类型、制动盘转速、施加到制动片的压力、制动盘和制动片之间的摩擦系数)的函数来分析这种行为,以及热条件(圆盘的温度、圆盘中的热通量以及圆盘整个表面上通过对流进行的热交换),制动盘衬垫组件的几何特征、衬垫相对于制动盘的位置和机械参数组件、衬垫相对于制动器盘的位置以及机械参数(杨氏模量、密度、泊松系数)。这种分析使我们能够看到接触的制动盘和制动片的行为,并识别这些损坏,以便找到满足负责制动系统设计的工程师的需求的最佳技术解决方案,特别是制动盘制动片的扭矩,并改进该系统,使其更加可靠,并对耐热性良好的盘和垫进行最佳和经济的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
WSEAS Transactions on Applied and Theoretical Mechanics
WSEAS Transactions on Applied and Theoretical Mechanics Engineering-Computational Mechanics
CiteScore
1.30
自引率
0.00%
发文量
21
期刊介绍: WSEAS Transactions on Applied and Theoretical Mechanics publishes original research papers relating to computational and experimental mechanics. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with fluid-structure interaction, impact and multibody dynamics, nonlinear dynamics, structural dynamics and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
期刊最新文献
Reduction of Input Torque and Joint Reactions in High-Speed Mechanical Systems with Reciprocating Motion Modeling the Normal Contact Characteristics between Components Joined in Multi-Bolted Systems Structural Investigation of Drini River Bridges, Case Study of Structures Analyses Stability of Beam Bridges Under Bridge-Vehicle Interaction Effect of Earthquake-Induced Structural Pounding on the Floor Accelerations and Floor Response Spectra of Adjacent Building Structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1