Tensor product P-splines using a sparse mixed model formulation

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY Statistical Modelling Pub Date : 2023-08-18 DOI:10.1177/1471082x231178591
M. Boer
{"title":"Tensor product P-splines using a sparse mixed model formulation","authors":"M. Boer","doi":"10.1177/1471082x231178591","DOIUrl":null,"url":null,"abstract":"A new approach to represent P-splines as a mixed model is presented. The corresponding matrices are sparse allowing the new approach can find the optimal values of the penalty parameters in a computationally efficient manner. Whereas the new mixed model P-splines formulation is similar to the original P-splines, a key difference is that the fixed effects are modelled explicitly, and extra constraints are added to the random part of the model. An important feature ensuring that the entire computation is fast is a sparse implementation of the Automated Differentiation of the Cholesky algorithm. It is shown by means of two examples that the new approach is fast compared to existing methods. The methodology has been implemented in the R-package LMMsolver available on CRAN ( https://CRAN.R-project.org/package=LMMsolver ).","PeriodicalId":49476,"journal":{"name":"Statistical Modelling","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082x231178591","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

A new approach to represent P-splines as a mixed model is presented. The corresponding matrices are sparse allowing the new approach can find the optimal values of the penalty parameters in a computationally efficient manner. Whereas the new mixed model P-splines formulation is similar to the original P-splines, a key difference is that the fixed effects are modelled explicitly, and extra constraints are added to the random part of the model. An important feature ensuring that the entire computation is fast is a sparse implementation of the Automated Differentiation of the Cholesky algorithm. It is shown by means of two examples that the new approach is fast compared to existing methods. The methodology has been implemented in the R-package LMMsolver available on CRAN ( https://CRAN.R-project.org/package=LMMsolver ).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用稀疏混合模型公式的张量乘积P样条
提出了一种将p样条曲线表示为混合模型的新方法。相应的矩阵是稀疏的,使得新方法能够以高效的计算方式找到惩罚参数的最优值。尽管新的混合模型p样条公式与原始的p样条公式相似,但一个关键的区别是固定效应被明确地建模,并且在模型的随机部分添加了额外的约束。确保整个计算快速的一个重要特征是对Cholesky算法的自动微分的稀疏实现。通过两个算例表明,与现有方法相比,新方法具有较快的速度。该方法已在CRAN (https://CRAN.R-project.org/package=LMMsolver)上提供的r包LMMsolver中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Modelling
Statistical Modelling 数学-统计学与概率论
CiteScore
2.20
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: The primary aim of the journal is to publish original and high-quality articles that recognize statistical modelling as the general framework for the application of statistical ideas. Submissions must reflect important developments, extensions, and applications in statistical modelling. The journal also encourages submissions that describe scientifically interesting, complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions that embrace the diversity of applied statistical modelling.
期刊最新文献
A statistical modelling approach to feedforward neural network model selection The Skellam distribution revisited: Estimating the unobserved incoming and outgoing ICU COVID-19 patients on a regional level in Germany A novel mixture model for characterizing human aiming performance data Fast, effective, and coherent time series modelling using the sparsity-ranked lasso Taking advantage of sampling designs in spatial small-area survey studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1