Functional Characterization of Genetic Variant Effects on Expression.

IF 7 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Annual Review of Biomedical Data Science Pub Date : 2022-04-28 DOI:10.1146/annurev-biodatasci-122120-010010
Elise D. Flynn, T. Lappalainen
{"title":"Functional Characterization of Genetic Variant Effects on Expression.","authors":"Elise D. Flynn, T. Lappalainen","doi":"10.1146/annurev-biodatasci-122120-010010","DOIUrl":null,"url":null,"abstract":"Thousands of common genetic variants in the human population have been associated with disease risk and phenotypic variation by genome-wide association studies (GWAS). However, the majority of GWAS variants fall into noncoding regions of the genome, complicating our understanding of their regulatory functions, and few molecular mechanisms of GWAS variant effects have been clearly elucidated. Here, we set out to review genetic variant effects, focusing on expression quantitative trait loci (eQTLs), including their utility in interpreting GWAS variant mechanisms. We discuss the interrelated challenges and opportunities for eQTL analysis, covering determining causal variants, elucidating molecular mechanisms of action, and understanding context variability. Addressing these questions can enable better functional characterization of disease-associated loci and provide insights into fundamental biological questions of the noncoding genetic regulatory code and its control of gene expression. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-122120-010010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

Thousands of common genetic variants in the human population have been associated with disease risk and phenotypic variation by genome-wide association studies (GWAS). However, the majority of GWAS variants fall into noncoding regions of the genome, complicating our understanding of their regulatory functions, and few molecular mechanisms of GWAS variant effects have been clearly elucidated. Here, we set out to review genetic variant effects, focusing on expression quantitative trait loci (eQTLs), including their utility in interpreting GWAS variant mechanisms. We discuss the interrelated challenges and opportunities for eQTL analysis, covering determining causal variants, elucidating molecular mechanisms of action, and understanding context variability. Addressing these questions can enable better functional characterization of disease-associated loci and provide insights into fundamental biological questions of the noncoding genetic regulatory code and its control of gene expression. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基因变异对表达影响的功能表征。
通过全基因组关联研究(GWAS),人类中数千种常见的遗传变异与疾病风险和表型变异有关。然而,大多数GWAS变体属于基因组的非编码区,这使我们对其调控功能的理解变得复杂,而且很少有GWAS变体效应的分子机制得到明确阐明。在这里,我们开始综述遗传变异效应,重点关注表达数量性状基因座(eQTL),包括它们在解释GWAS变异机制中的作用。我们讨论了eQTL分析的相关挑战和机遇,包括确定因果变异、阐明分子作用机制和理解上下文变异。解决这些问题可以更好地表征疾病相关基因座的功能,并深入了解非编码遗传调控密码及其对基因表达的控制的基本生物学问题。《生物医学数据科学年度评论》第5卷预计最终在线出版日期为2022年8月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.10
自引率
1.70%
发文量
0
期刊介绍: The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.
期刊最新文献
Spatial Transcriptomics Brings New Challenges and Opportunities for Trajectory Inference. The Evolutionary Interplay of Somatic and Germline Mutation Rates. Centralized and Federated Models for the Analysis of Clinical Data. Mapping the Human Cell Surface Interactome: A Key to Decode Cell-to-Cell Communication. Data Science Methods for Real-World Evidence Generation in Real-World Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1