Substation clustering based on improved KFCM algorithm with adaptive optimal clustering number selection

IF 1.9 Q4 ENERGY & FUELS Global Energy Interconnection Pub Date : 2023-08-01 DOI:10.1016/j.gloei.2023.08.010
Yanhui Xu , Yihao Gao , Yundan Cheng , Yuhang Sun , Xuesong Li , Xianxian Pan , Hao Yu
{"title":"Substation clustering based on improved KFCM algorithm with adaptive optimal clustering number selection","authors":"Yanhui Xu ,&nbsp;Yihao Gao ,&nbsp;Yundan Cheng ,&nbsp;Yuhang Sun ,&nbsp;Xuesong Li ,&nbsp;Xianxian Pan ,&nbsp;Hao Yu","doi":"10.1016/j.gloei.2023.08.010","DOIUrl":null,"url":null,"abstract":"<div><p>The premise and basis of load modeling are substation load composition inquiries and cluster analyses. However, the traditional kernel fuzzy C-means (KFCM) algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions. To overcome these limitations, an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper. This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm. The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio. Compared with the traditional KFCM algorithm, the enhanced KFCM algorithm has robust clustering and comprehensive abilities, enabling the efficient convergence to the global optimal solution</p></div>","PeriodicalId":36174,"journal":{"name":"Global Energy Interconnection","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Energy Interconnection","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096511723000695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The premise and basis of load modeling are substation load composition inquiries and cluster analyses. However, the traditional kernel fuzzy C-means (KFCM) algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions. To overcome these limitations, an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper. This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm. The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio. Compared with the traditional KFCM algorithm, the enhanced KFCM algorithm has robust clustering and comprehensive abilities, enabling the efficient convergence to the global optimal solution

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应最优聚类数选择改进KFCM算法的变电站聚类
负荷建模的前提和基础是变电站负荷组成查询和聚类分析。然而,传统的核模糊c -均值(KFCM)算法存在人工聚类数选择和收敛于局部最优解的局限性。为了克服这些局限性,本文提出了一种自适应最优聚类数选择的改进KFCM算法。该算法结合遗传算法强大的全局搜索能力和模拟退火算法的鲁棒局部搜索能力,对KFCM算法进行了优化。改进的KFCM算法利用聚类评价指标比自适应确定理想聚类数。与传统的KFCM算法相比,增强的KFCM算法具有鲁棒的聚类能力和综合能力,能够快速收敛到全局最优解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Energy Interconnection
Global Energy Interconnection Engineering-Automotive Engineering
CiteScore
5.70
自引率
0.00%
发文量
985
审稿时长
15 weeks
期刊最新文献
Vibration and noise mechanism of a 110 kV transformer under DC bias based on finite element method A novel cascaded H-bridge photovoltaic inverter with flexible arc suppression function Consideration of the influence of supports in modeling the electromagnetic fields of 25 kV traction networks under emergency conditions Impact of the carbon market on investment benefits of power-grid enterprises in China: A system dynamics analysis Optimized scheduling of integrated energy systems for low carbon economy considering carbon transaction costs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1