The effects of phosphorus supply limitation on photosynthesis, biomass production, nutritional quality, and mineral nutrition in lettuce grown in a recirculating nutrient solution
{"title":"The effects of phosphorus supply limitation on photosynthesis, biomass production, nutritional quality, and mineral nutrition in lettuce grown in a recirculating nutrient solution","authors":"Damianos Neocleous , Dimitrios Savvas","doi":"10.1016/j.scienta.2019.04.007","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigated the impact of phosphorus (P) supply levels (0.8, 1.3 and 1.8 mM) in two green leaf lettuce (<em>Lactuca sativa</em> L.) types, namely ‘Romaine’ (cv. Nader), and ‘Lollo’ (cv. Bionda) grown in a recirculating nutrient solution. The biomass yield of the Romaine type was reduced by 15% at the lowest P supply (0.8 mM) and plants showed reduced photosynthetic function (<em>i.e</em>., net photosynthesis, stomatal conductance, quantum yield and electron flow) and increased root/shoot ratio. On the other hand, the Lollo type maintained photosynthetic rates and biomass accumulation in all cases and proved less sensitive to low P levels in the NS. At the lowest P supply, the P concentration in the recirculating solution declined to 0.1 mM and showed a decline in leaf P and Ca concentrations and an increase in total sugar and nitrate content, depending on the cultivar. Also, lowering P supply boosted P-use efficiency (kg biomass kg<sup>−1</sup> P supply) in both types of lettuce. Nutrient to water uptake ratios of macro nutrients N, P, K, Ca and Mg were determined as follows: (i) 16.0, 1.3, 9.1, 3.1 and 0.9 mmol L<sup>−1</sup>, respectively for Romaine, and (ii) 16.4, 1.3, 9.1, 3.3 and 0.9 mmol L<sup>−1</sup>, respectively for Lollo. The current experimental results suggest that, reducing the P supply to lower levels than those currently recommended for lettuce crops grown in closed hydroponics considerably improves the P use efficiency in Mediterranean greenhouses without compromising yield.</p></div>","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"252 ","pages":"Pages 379-387"},"PeriodicalIF":3.9000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.scienta.2019.04.007","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304423819302559","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 29
Abstract
In this study, we investigated the impact of phosphorus (P) supply levels (0.8, 1.3 and 1.8 mM) in two green leaf lettuce (Lactuca sativa L.) types, namely ‘Romaine’ (cv. Nader), and ‘Lollo’ (cv. Bionda) grown in a recirculating nutrient solution. The biomass yield of the Romaine type was reduced by 15% at the lowest P supply (0.8 mM) and plants showed reduced photosynthetic function (i.e., net photosynthesis, stomatal conductance, quantum yield and electron flow) and increased root/shoot ratio. On the other hand, the Lollo type maintained photosynthetic rates and biomass accumulation in all cases and proved less sensitive to low P levels in the NS. At the lowest P supply, the P concentration in the recirculating solution declined to 0.1 mM and showed a decline in leaf P and Ca concentrations and an increase in total sugar and nitrate content, depending on the cultivar. Also, lowering P supply boosted P-use efficiency (kg biomass kg−1 P supply) in both types of lettuce. Nutrient to water uptake ratios of macro nutrients N, P, K, Ca and Mg were determined as follows: (i) 16.0, 1.3, 9.1, 3.1 and 0.9 mmol L−1, respectively for Romaine, and (ii) 16.4, 1.3, 9.1, 3.3 and 0.9 mmol L−1, respectively for Lollo. The current experimental results suggest that, reducing the P supply to lower levels than those currently recommended for lettuce crops grown in closed hydroponics considerably improves the P use efficiency in Mediterranean greenhouses without compromising yield.
期刊介绍:
Scientia Horticulturae is an international journal publishing research related to horticultural crops. Articles in the journal deal with open or protected production of vegetables, fruits, edible fungi and ornamentals under temperate, subtropical and tropical conditions. Papers in related areas (biochemistry, micropropagation, soil science, plant breeding, plant physiology, phytopathology, etc.) are considered, if they contain information of direct significance to horticulture. Papers on the technical aspects of horticulture (engineering, crop processing, storage, transport etc.) are accepted for publication only if they relate directly to the living product. In the case of plantation crops, those yielding a product that may be used fresh (e.g. tropical vegetables, citrus, bananas, and other fruits) will be considered, while those papers describing the processing of the product (e.g. rubber, tobacco, and quinine) will not. The scope of the journal includes all horticultural crops but does not include speciality crops such as, medicinal crops or forestry crops, such as bamboo. Basic molecular studies without any direct application in horticulture will not be considered for this journal.