Bringing Engineering Rigor to Deep Learning

Q3 Computer Science Operating Systems Review (ACM) Pub Date : 2019-07-25 DOI:10.1145/3352020.3352030
Kexin Pei, Shiqi Wang, Yuchi Tian, J. Whitehouse, Carl Vondrick, Yinzhi Cao, Baishakhi Ray, S. Jana, Junfeng Yang
{"title":"Bringing Engineering Rigor to Deep Learning","authors":"Kexin Pei, Shiqi Wang, Yuchi Tian, J. Whitehouse, Carl Vondrick, Yinzhi Cao, Baishakhi Ray, S. Jana, Junfeng Yang","doi":"10.1145/3352020.3352030","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) systems are increasingly deployed in safety- and security-critical domains including autonomous driving, robotics, and malware detection, where the correctness and predictability of a system on corner-case inputs are of great importance. Unfortunately, the common practice to validating a deep neural network (DNN) - measuring overall accuracy on a randomly selected test set - is not designed to surface corner-case errors. As recent work shows, even DNNs with state-of-the-art accuracy are easily fooled by human-imperceptible, adversarial perturbations to the inputs. Questions such as how to test corner-case behaviors more thoroughly and whether all adversarial samples have been found remain unanswered. In the last few years, we have been working on bringing more engineering rigor into deep learning. Towards this goal, we have built five systems to test DNNs more thoroughly and verify the absence of adversarial samples for given datasets. These systems check a broad spectrum of properties (e.g., rotating an image should never change its classification) and find thousands of error-inducing samples for popular DNNs in critical domains (e.g., ImageNet, autonomous driving, and malware detection). Our DNN verifiers are also orders of magnitude (e.g., 5,000×) faster than similar tools. This article overviews our systems and discusses three open research challenges to hopefully inspire more future research towards testing and verifying DNNs.","PeriodicalId":38935,"journal":{"name":"Operating Systems Review (ACM)","volume":"53 1","pages":"59 - 67"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3352020.3352030","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operating Systems Review (ACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3352020.3352030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 4

Abstract

Deep learning (DL) systems are increasingly deployed in safety- and security-critical domains including autonomous driving, robotics, and malware detection, where the correctness and predictability of a system on corner-case inputs are of great importance. Unfortunately, the common practice to validating a deep neural network (DNN) - measuring overall accuracy on a randomly selected test set - is not designed to surface corner-case errors. As recent work shows, even DNNs with state-of-the-art accuracy are easily fooled by human-imperceptible, adversarial perturbations to the inputs. Questions such as how to test corner-case behaviors more thoroughly and whether all adversarial samples have been found remain unanswered. In the last few years, we have been working on bringing more engineering rigor into deep learning. Towards this goal, we have built five systems to test DNNs more thoroughly and verify the absence of adversarial samples for given datasets. These systems check a broad spectrum of properties (e.g., rotating an image should never change its classification) and find thousands of error-inducing samples for popular DNNs in critical domains (e.g., ImageNet, autonomous driving, and malware detection). Our DNN verifiers are also orders of magnitude (e.g., 5,000×) faster than similar tools. This article overviews our systems and discusses three open research challenges to hopefully inspire more future research towards testing and verifying DNNs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将工程Rigor引入深度学习
深度学习(DL)系统越来越多地部署在安全和安全关键领域,包括自动驾驶、机器人和恶意软件检测,在这些领域,系统对角落案例输入的正确性和可预测性至关重要。不幸的是,验证深度神经网络(DNN)的常见做法——在随机选择的测试集上测量整体精度——并不是为了解决拐角情况下的误差。正如最近的工作所表明的,即使是具有最先进精度的DNN也很容易被人类对输入的难以察觉的对抗性扰动所欺骗。诸如如何更彻底地测试角落案例行为以及是否已经找到所有对抗性样本等问题仍然没有答案。在过去的几年里,我们一直致力于将更严格的工程技术引入深度学习。为了实现这一目标,我们建立了五个系统来更彻底地测试DNN,并验证给定数据集是否存在对抗性样本。这些系统检查广泛的属性(例如,旋转图像永远不应该改变其分类),并为关键领域(例如,ImageNet、自动驾驶和恶意软件检测)中的流行DNN找到数千个引起错误的样本。我们的DNN验证器也比类似工具快几个数量级(例如,5000倍)。本文概述了我们的系统,并讨论了三个开放的研究挑战,希望能激励未来更多的DNN测试和验证研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Operating Systems Review (ACM)
Operating Systems Review (ACM) Computer Science-Computer Networks and Communications
CiteScore
2.80
自引率
0.00%
发文量
10
期刊介绍: Operating Systems Review (OSR) is a publication of the ACM Special Interest Group on Operating Systems (SIGOPS), whose scope of interest includes: computer operating systems and architecture for multiprogramming, multiprocessing, and time sharing; resource management; evaluation and simulation; reliability, integrity, and security of data; communications among computing processors; and computer system modeling and analysis.
期刊最新文献
Disaggregated GPU Acceleration for Serverless Applications Navigating Performance-Efficiency Tradeoffs in Serverless Computing: Deduplication to the Rescue! Using Local Cache Coherence for Disaggregated Memory Systems Make It Real: An End-to-End Implementation of A Physically Disaggregated Data Center Memory disaggregation: why now and what are the challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1