Environmental impact assessment of producing frozen spinach in central Italy

IF 12.4 Q1 ENVIRONMENTAL SCIENCES Resources Environment and Sustainability Pub Date : 2023-06-01 DOI:10.1016/j.resenv.2023.100110
Ester Foppa Pedretti, Daniele Duca, Martina Ballarini, Kofi Armah Boakye-Yiadom, Alessio Ilari
{"title":"Environmental impact assessment of producing frozen spinach in central Italy","authors":"Ester Foppa Pedretti,&nbsp;Daniele Duca,&nbsp;Martina Ballarini,&nbsp;Kofi Armah Boakye-Yiadom,&nbsp;Alessio Ilari","doi":"10.1016/j.resenv.2023.100110","DOIUrl":null,"url":null,"abstract":"<div><p>Europe has increased its production, processing, and export of vegetables in recent decades due to changing dietary patterns supporting a greater consumption of vegetables high in nutrition. The growing interest in environmental issues has led to advocacy for sustainable vegetable production and consumption. Thus, this study assessed the ecological impacts of producing 1 kg of frozen spinach (functional unit) by a food processor in central Italy (cradle-to-factory gate approach). We evaluated the global warming potential (GWP) for distributing the final to different destinations. We also compare the potential environmental credits for different spinach residue management strategies, residue reduction through improved process efficiency, and as a feedstock for biogas production (avoided maize silage) based on the total volatile solids content. The life cycle assessment was used following the CML_IA impact assessment method based mainly on primary data related to 2019/2020. The GWP was 1.55 kg CO<sub>2</sub>eq. with respect to the functional unit. Excluding the dominant cultivation phase, packaging, particularly corrugated board boxes, electricity, and wastewater treatment were significant contributors across the midpoint impact categories assessed. The GWP for distributing the packaged frozen to Australia was 24 times more impactful than regional inland distribution. When spinach residue is reduced to 20% and 10%, total impacts for all impact categories also decrease by 12% and 22%, respectively. The benefit of using the current amount of spinach residue to produce biomethane was less than 7% across all impact categories except terrestrial ecotoxicity (13%). Therefore, reducing spinach waste along the processing line and efficient end-of-packaging life management through recycling and reuse by the manufacturer can considerably reduce the environmental impacts of frozen spinach.</p></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":null,"pages":null},"PeriodicalIF":12.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Environment and Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666916123000038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3

Abstract

Europe has increased its production, processing, and export of vegetables in recent decades due to changing dietary patterns supporting a greater consumption of vegetables high in nutrition. The growing interest in environmental issues has led to advocacy for sustainable vegetable production and consumption. Thus, this study assessed the ecological impacts of producing 1 kg of frozen spinach (functional unit) by a food processor in central Italy (cradle-to-factory gate approach). We evaluated the global warming potential (GWP) for distributing the final to different destinations. We also compare the potential environmental credits for different spinach residue management strategies, residue reduction through improved process efficiency, and as a feedstock for biogas production (avoided maize silage) based on the total volatile solids content. The life cycle assessment was used following the CML_IA impact assessment method based mainly on primary data related to 2019/2020. The GWP was 1.55 kg CO2eq. with respect to the functional unit. Excluding the dominant cultivation phase, packaging, particularly corrugated board boxes, electricity, and wastewater treatment were significant contributors across the midpoint impact categories assessed. The GWP for distributing the packaged frozen to Australia was 24 times more impactful than regional inland distribution. When spinach residue is reduced to 20% and 10%, total impacts for all impact categories also decrease by 12% and 22%, respectively. The benefit of using the current amount of spinach residue to produce biomethane was less than 7% across all impact categories except terrestrial ecotoxicity (13%). Therefore, reducing spinach waste along the processing line and efficient end-of-packaging life management through recycling and reuse by the manufacturer can considerably reduce the environmental impacts of frozen spinach.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
意大利中部生产冷冻菠菜的环境影响评价
近几十年来,欧洲增加了蔬菜的生产、加工和出口,因为饮食模式的改变支持了高营养蔬菜的更多消费。对环境问题日益增长的兴趣导致倡导可持续蔬菜生产和消费。因此,本研究评估了意大利中部一家食品加工商生产1公斤冷冻菠菜(功能单位)的生态影响(从摇篮到工厂大门的方法)。我们评估了全球变暖潜势(GWP)的最终分配到不同的目的地。我们还比较了不同菠菜残渣管理策略的潜在环境信用,通过提高工艺效率减少残渣,并根据总挥发性固体含量作为沼气生产的原料(避免玉米青贮)。生命周期评价采用CML_IA影响评价方法,主要基于2019/2020年相关的原始数据。GWP为1.55 kg co2当量。关于功能单位。排除主要的种植阶段,包装,特别是瓦楞纸箱,电力和废水处理是评估中点影响类别的重要贡献者。将包装好的冷冻食品配送到澳大利亚的全球变暖潜能值是内陆地区配送的24倍。当菠菜残渣减少到20%和10%时,所有影响类别的总影响也分别减少了12%和22%。除陆地生态毒性(13%)外,在所有影响类别中,利用目前数量的菠菜渣生产生物甲烷的效益低于7%。因此,通过制造商的回收和再利用,减少加工过程中的菠菜浪费和有效的包装终寿命管理,可以大大减少冷冻菠菜对环境的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Resources Environment and Sustainability
Resources Environment and Sustainability Environmental Science-Environmental Science (miscellaneous)
CiteScore
15.10
自引率
0.00%
发文量
41
审稿时长
33 days
期刊最新文献
Unveiling driving disparities between satisfaction and equity of ecosystem services in urbanized areas Unraveling the impact of global change on glomalin and implications for soil carbon storage in terrestrial ecosystems Appropriately delayed flooding before rice transplanting increases net ecosystem economic benefit in the winter green manure-rice rotation system Clubroot disease in soil: An examination of its occurrence in chemical and organic environments Based on experiment and quantum chemical calculations: a study of the co-pyrolysis mechanism of polyesterimide enameled wires with polyvinyl chloride and the catalytic effect of endogenous metal Cu
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1