Applying Machine Learning to the Development of Prediction Models for Bank Deposit Subscription

Pub Date : 2022-01-01 DOI:10.4018/ijban.288514
Sipu Hou, Zongzhen Cai, Jiming Wu, Hongwei Du, Peng Xie
{"title":"Applying Machine Learning to the Development of Prediction Models for Bank Deposit Subscription","authors":"Sipu Hou, Zongzhen Cai, Jiming Wu, Hongwei Du, Peng Xie","doi":"10.4018/ijban.288514","DOIUrl":null,"url":null,"abstract":"It is not easy for banks to sell their term-deposit products to new clients because many factors will affect customers’ purchasing decision and because banks may have difficulties to identify their target customers. To address this issue, we use different supervised machine learning algorithms to predict if a customer will subscribe a bank term deposit and then compare the performance of these prediction models. Specifically, the current paper employs these five algorithms: Naïve Bayes, Decision Tree, Random Forest, Support Vector Machine and Neural Network. This paper thus contributes to the artificial intelligence and Big Data field with an important evidence of the best performed model for predicting bank term deposit subscription.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijban.288514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

It is not easy for banks to sell their term-deposit products to new clients because many factors will affect customers’ purchasing decision and because banks may have difficulties to identify their target customers. To address this issue, we use different supervised machine learning algorithms to predict if a customer will subscribe a bank term deposit and then compare the performance of these prediction models. Specifically, the current paper employs these five algorithms: Naïve Bayes, Decision Tree, Random Forest, Support Vector Machine and Neural Network. This paper thus contributes to the artificial intelligence and Big Data field with an important evidence of the best performed model for predicting bank term deposit subscription.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
将机器学习应用于银行存款认购预测模型的开发
银行向新客户销售定期存款产品并不容易,因为许多因素会影响客户的购买决策,而且银行可能难以确定其目标客户。为了解决这个问题,我们使用不同的监督机器学习算法来预测客户是否会订阅银行定期存款,然后比较这些预测模型的性能。具体来说,本文采用了以下五种算法:Naïve贝叶斯、决策树、随机森林、支持向量机和神经网络。因此,本文为人工智能和大数据领域提供了预测银行定期存款认购的最佳模型的重要证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1