{"title":"Taguchi L16 (44) orthogonal array-based study and thermodynamics analysis for electro-Fenton process treatment of textile industrial dye","authors":"Imran Ahmad, D. Basu","doi":"10.1515/cppm-2022-0045","DOIUrl":null,"url":null,"abstract":"Abstract Reactive orange 16 (RO16) is the most widely used azo dye in Textile industry. Complex aromatic structures and resistivity to biological decay caused the dye pollutants incompletely treated by the conventional oxidative methods. The current study presents the electro-Fenton-based advanced oxidation treatment of RO16 dye and the process optimization by Taguchi-based design of experiment (DOE). Using a 500 mL volume lab-scale experimental setup, the process was first studied for the principal operational parameters (initial dye concentration (q); [H2O2]/[Fe+2] (R); current density (ρ); and temperature (T)) effect on decolourization (D R ) and COD removal (C R ). Then, by means of the L16 (44) orthogonal array (OA) formation, standard mean and signal-to-noise (S/N) ratio, the process was optimized for the response variables. The result showed the optimized result at q = 100 mg/L, R = 100, ρ = 8 mA/cm2, and T = 32 °C; with D R and C R as 90.023 and 84.344%, respectively. It was found that the current density affects the process most, followed by [H2O2]/[Fe+2] ratio, initial dye concentration, and temperature i.e., ρ > R > q > T. Also, with the analysis of variance (ANOVA), model equations for D R and C R were developed and its accuracy was verified for experimental results. At optimized conditions, the first order removal rate constants (k a ) were found from batch results. Additionally, the thermodynamic constants (ΔH e , ΔS e , and ΔG b ) were also calculated for the nature of heat-energy involved and temperature effect study on dye degradation. The results showed that the process was thermodynamically feasible, endothermic, and non-spontaneous with a lower energy barrier (E A = 46.7 kJ mol−1).","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2022-0045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Reactive orange 16 (RO16) is the most widely used azo dye in Textile industry. Complex aromatic structures and resistivity to biological decay caused the dye pollutants incompletely treated by the conventional oxidative methods. The current study presents the electro-Fenton-based advanced oxidation treatment of RO16 dye and the process optimization by Taguchi-based design of experiment (DOE). Using a 500 mL volume lab-scale experimental setup, the process was first studied for the principal operational parameters (initial dye concentration (q); [H2O2]/[Fe+2] (R); current density (ρ); and temperature (T)) effect on decolourization (D R ) and COD removal (C R ). Then, by means of the L16 (44) orthogonal array (OA) formation, standard mean and signal-to-noise (S/N) ratio, the process was optimized for the response variables. The result showed the optimized result at q = 100 mg/L, R = 100, ρ = 8 mA/cm2, and T = 32 °C; with D R and C R as 90.023 and 84.344%, respectively. It was found that the current density affects the process most, followed by [H2O2]/[Fe+2] ratio, initial dye concentration, and temperature i.e., ρ > R > q > T. Also, with the analysis of variance (ANOVA), model equations for D R and C R were developed and its accuracy was verified for experimental results. At optimized conditions, the first order removal rate constants (k a ) were found from batch results. Additionally, the thermodynamic constants (ΔH e , ΔS e , and ΔG b ) were also calculated for the nature of heat-energy involved and temperature effect study on dye degradation. The results showed that the process was thermodynamically feasible, endothermic, and non-spontaneous with a lower energy barrier (E A = 46.7 kJ mol−1).
期刊介绍:
Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.