{"title":"Convolutional neural network framework for wind turbine electromechanical fault detection","authors":"Emilie Stone, S. Giani, D. Zappalá, C. Crabtree","doi":"10.1002/we.2857","DOIUrl":null,"url":null,"abstract":"Effective and timely health monitoring of wind turbine gearboxes and generators is essential to reduce the costs of operations and maintenance activities, especially offshore. This paper presents a scalable and lightweight convolutional neural network (CNN) framework using high‐dimensional raw condition monitoring data for the automatic detection of multiple wind turbine electromechanical faults. The proposed approach leverages the potential of combining information from a variety of signals to learn features and to discriminate the types of fault and their severity. As a result of the CNN layers used to extract features from the signals, this architecture works in the time domain and can digest high‐resolution multi‐sensor data streams in real‐time. To overcome the inherent black‐box nature of AI models, this research proposes two interpretability techniques, multidimensional scaling and layer‐wise relevance propagation, to analyse the proposed model's inner‐working and identify the signal features relevant for fault classification. Experimental results show high performance and classification accuracies above 99.9% for all fault cases tested, demonstrating the efficacy of the proposed fault‐detection system.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/we.2857","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
Effective and timely health monitoring of wind turbine gearboxes and generators is essential to reduce the costs of operations and maintenance activities, especially offshore. This paper presents a scalable and lightweight convolutional neural network (CNN) framework using high‐dimensional raw condition monitoring data for the automatic detection of multiple wind turbine electromechanical faults. The proposed approach leverages the potential of combining information from a variety of signals to learn features and to discriminate the types of fault and their severity. As a result of the CNN layers used to extract features from the signals, this architecture works in the time domain and can digest high‐resolution multi‐sensor data streams in real‐time. To overcome the inherent black‐box nature of AI models, this research proposes two interpretability techniques, multidimensional scaling and layer‐wise relevance propagation, to analyse the proposed model's inner‐working and identify the signal features relevant for fault classification. Experimental results show high performance and classification accuracies above 99.9% for all fault cases tested, demonstrating the efficacy of the proposed fault‐detection system.
期刊介绍:
Wind Energy offers a major forum for the reporting of advances in this rapidly developing technology with the goal of realising the world-wide potential to harness clean energy from land-based and offshore wind. The journal aims to reach all those with an interest in this field from academic research, industrial development through to applications, including individual wind turbines and components, wind farms and integration of wind power plants. Contributions across the spectrum of scientific and engineering disciplines concerned with the advancement of wind power capture, conversion, integration and utilisation technologies are essential features of the journal.